La fusione nucleare
La scorsa volta abbiamo parlato della fissione nucleare, mentre oggi parliamo di un altro tipo di reazione nucleare: la fusione. È la reazione che fa bruciare e quindi brillare le stelle.
Prima però ecco la puntata di Storie, il podcast in cui intervisto giovani ricercatori in fisica. In questa puntata ho parlato con Alessandro David, dell’Università di Costanza, che si occupa di informatica quantistica. L’audio purtroppo non è ottimale perché non ho potuto usare il nuovo microfono. Portate pazienza.
Ascolta “4. Informatica e computer quantistici” su Spreaker.
Se vi piacciono la newsletter e il podcast, potete invitare un vostro amico a iscriversi.
Se avete domande o suggerimenti, scrivetemi a spacebreak [at] francescobussola.it
Di cosa parliamo oggi
– la fusione nucleare
– la fusione delle stelle
– le centrali a fusione
La fusione nucleare
Se vi ricordate questa newsletter sugli orbitali atomici, avevamo detto che gli atomi che compongono la materia sono composti da un nucleo, in cui si trovano protoni e neutroni – attorno al quale “ruotano” degli elettroni – e che gli atomi sono classificati in base al numero di protoni che hanno: a un numero diverso di protoni corrisponde un elemento diverso della tavola periodica. I protoni all’interno del nucleo, poi, hanno una carica elettrica positiva e questo è il motivo per cui è molto difficile far avvicinare i nuclei di due atomi: avendo la stessa carica elettrica, si respingono.
Supponiamo però di riuscire a comprimere due nuclei atomici così tanto da superare questa repulsione: quando sono abbastanza vicini i nuclei degli atomi si fondono in un nucleo unico, con un numero diverso di protoni e neutroni. Da i due atomi iniziali si crea un terzo atomo, con una massa diversa: questo processo prende il nome di fusione nucleare.
Se notate, il processo di fusione è esattamente il contrario della fissione nucleare, in cui un atomo si spezza in frammenti più piccoli.
L’energia
Fortunatamente il processo di fusione non avviene in condizioni normali, perché i nuclei degli atomi tendono a stare a distanza a causa della repulsione elettromagnetica. In un certo senso è questo il motivo per cui esiste la materia e i nostri corpi non collassano su loro stessi.
Per innescare la fusione nucleare è necessaria energia: bisogna sconfiggere la repulsione tra i nuclei. Ma cosa accade una volta innescata?
Per capirlo dobbiamo tornare a immaginare come è fatto un nucleo atomico. I protoni e i neutroni nel nucleo sono tenuti insieme da una forza naturale chiamata interazione nucleare forte. Ne abbiamo parlato in una delle prime newsletter di Space Break. Nel momento della fusione tra due nuclei, i legami tra protoni e neutroni dovuti all’interazione nucleare forte si rompono, permettendo ai protoni e ai neutroni di ricombinarsi creando dei nuovi legami.
A questo punto si possono verificare due possibilità: o il prodotto della fusione ha una massa inferiore alle masse dei nuclei di partenza, oppure ha una massa maggiore.
Nel caso in cui il prodotto della fusione abbia una massa inferiore, significa che la massa mancante si è trasformata in energia, seguendo la famosa legge di Einstein E=mc^2. In questo caso, quindi, il processo di fusione è esotermico, ossia libera energia.
Nell’altro caso invece, ossia quando il prodotto della reazione ha una massa maggiore dei nuclei di partenza, significa che l’atomo ha assorbito energia, trasformandola in massa. Il processo di fusione è in questo caso endotermico: mangia energia.
Considerate che, a causa della legge di Einstein, una piccola variazione di massa corrisponde a una grande quantità di energia. Trasformando in energia un grammo di materia tramite la relazione E=mc^2 si ottengono circa 21480879541 Kcal, che è l’equivalente energetico di 36 milioni di pizze margherite.
In particolare, tutti i processi di fusione che coinvolgono i primi 26 elementi della tavola periodica – come ad esempio idrogeno, elio, carbonio, ossigeno, litio, sodio e ferro – sono esotermici e liberano una grande quantità di energia. I processi di fusione che coinvolgono altri elementi sono solitamente endotermici e consumano energia, creando nuovi elementi più “pesanti”.
La fusione delle stelle
In generale, più i nuclei di partenza sono “pesanti”, più è alta l’energia necessaria a innescare la reazione. Se ci pensate la cosa ha senso: gli atomi più pesanti hanno dei nuclei con un numero maggiore di protoni e quindi tendono a respingersi tra loro con più forza. Gli atomi più leggeri invece hanno meno protoni e quindi i loro nuclei sono più facili da avvicinare. Per questo motivo, sia in natura che nelle applicazioni tecnologiche della fusione, gli atomi coinvolti sono solitamente atomi di idrogeno, il cui nucleo ha un solo protone.
E l’idrogeno è l’ingrediente principale della reazione nucleare che avviene all’interno delle stelle. Le stelle infatti bruciano, emettendo una grande quantità di energia sotto forma di radiazioni elettromagnetiche, proprio grazie a un processo di fusione nucleare. Si ritiene che all’inizio della loro vita le stelle siano composte quasi esclusivamente di idrogeno e che questo si trasformi in altri elementi più pesanti, che possono a loro volta partecipare a nuovi processi di fusione.
L’intero processo, chiamato nucleosintesi, funziona più o meno così: nella parte esterna della stella, quella più superficiale e (quella più fredda), avviene la fusione dell’idrogeno. Questa reazione produce deuterio ed infine elio che, essendo più “pesante” – ha un nucleo con due protoni e due neutroni, mentre l’idrogeno ha solo un protone – scivola più internamente. Scivolando all’interno, però, l’elio si trova sottoposto a una pressione e a una temperatura maggiori e, se la pressione è sufficiente, si fonde producendo litio e berillio. A questo punto i prodotti della fusione nucleare, scivolano nuovamente verso l’interno e si innescano nuovi processi di fusione a più alte temperature: dal berillio si formano il carbonio, l’azoto, l’ossigeno e via via elementi sempre più pesanti. Si ritiene che nei nuclei delle stelle di medie dimensioni – come il nostro Sole – avvengano le reazioni esotermiche del ferro e del nichel e che – la cosa è abbastanza affascinante – tutti gli atomi di cui siamo composti siano stati prodotti in un lontano passato da dei processi di fusione nucleare come quelli che possiamo osservare oggi nelle stelle.
All’interno delle stelle avvengono anche dei particolari processi nucleari che, in certe circostanze, possono produrre elementi più pesanti del ferro e del nichel, ma non si tratta propriamente di fusione nucleare.
Le centrali a fusione
I processi di fusione nucleare liberano moltissima energia e da anni ci si interroga sulla possibilità di costruire delle centrali nucleari che utilizzino la fusione anziché la fissione nucleare: la fusione nucleare emette poche radiazioni, non lascia scorie radioattive e avviene a temperature molto più alte, rilasciando grandi quantità di energia.
La grande quantità di energia rilasciata e le temperature coinvolte sono di fatto il motivo per cui continuiamo a utilizzare centrali a fissione anziché centrali a fusione: anche riuscendo a innescare una reazione di fusione, come la si confina? Come possiamo controllarla? E soprattutto, come possiamo convertire tutta quell’energia rilasciata in energia elettrica in maniera efficiente?
A partire dagli anni settanta si sono susseguiti vari esperimenti per riprodurre in laboratorio le reazioni di fusione nucleare, come ad esempio JET, JT-60 o START.
Attualmente il progetto più avanzato per la costruzione di un reattore nucleare a fusione è ITER, un prototipo sperimentale in grado di produrre più energia di quanta ne serva per accenderlo. I processi di reazione che avverranno in ITER saranno confinati da forti campi elettromagnetici, tramite una macchina chiamata tokamak (qui trovate una foto del tokamak che si trova al MIT di Boston). Se si provasse a confinare la reazione nucleare con delle semplici pareti, brucerebbero.
Pillola
Oggi niente pillole, ma questa la dovete sapere. In settimana SpaceX ha annunciato che è intenzionata a inviare due turisti in orbita attorno alla Luna nel 2018. Sta nascendo il turismo spaziale sotto al nostro naso. Segnatevi la data.
A tal proposito l’INAF ha chiesto all’astronauta italiano Paolo Nespoli cosa ne pensa. Ecco l’intervista.
La fisica di Ale
La striscia di oggi. I fumetti di Alessandro sono su Vuoto Comico.
La fissione nucleare
Vi siete mai chiesti come funziona una centrale nucleare? Si usano sostanze radioattive, certo. Ma cosa sono davvero? E come vengono utilizzate? E perché una centrale nucleare riesce a produrre molta più energia di una centrale elettrica a carbone? Ne parliamo oggi.
Nel frattempo, per chi se l’è persa, qui c’è la scorsa puntata di Storie, il podcast in cui intervisto giovani ricercatori in fisica. Ho parlato con Zeno Tornasi, dell’Università di Glasgow. Si occupa di onde gravitazionali.
Per scaricare o ricevere il podcast sul telefono potete utilizzare l’app Spreaker Podcast Radio, oppure la vostra app preferita (come iTunes o altre) utilizzando gli RSS del podcast. Le altre puntate sono qui.
Se vi piacciono la newsletter e il podcast, potete invitare un vostro amico a iscriversi.
Se avete domande o suggerimenti, scrivetemi a spacebreak [at] francescobussola.it
Ah, in fondo c’è la vignetta di Ale.
Di cosa parliamo oggi
– le centrali nucleari
– la fissione nucleare
– fusione e fissione
– pillole
Le centrali nucleari
Partiamo dall’argomento più semplice. Come fa una centrale nucleare a produrre energia elettrica? La risposta può sorprendere: esattamente come le centrali elettriche a carbone. Viene scaldata dell’acqua, l’acqua si trasforma in vapore, il vapore fa girare una turbina che a sua volta mette in moto un alternatore. L’alternatore è una macchina che trasforma l’energia meccanica della turbina in energia elettrica. Avete presente le “dinamo” per bicicletta che si usano per accendere il fanalino? Ecco, quelli sono alternatori.
Mentre l’alternatore genera corrente elettrica, il vapore acqueo si raffredda, torna allo stato liquido e il ciclo può ricominciare.
La differenza con le centrali a carbone non è quindi il procedimento usato per generare l’energia elettrica, ma la fonte utilizzata per scaldare l’acqua. Anziché bruciare il carbone si utilizzano delle sostanze radioattive.
Le sostanze radioattive
Ma quando una sostanza è radioattiva? Le sostanze radioattive sono formate da elementi piuttosto instabili, i cui atomi tendono a rompersi facilmente, causando la formazione di nuovi elementi ed emettendo radiazioni elettromagnetiche ad alta energia o altre piccole particelle. Le radiazioni, appunto.
La fissione nucleare
L’elemento radioattivo utilizzato nelle centrali nucleari è tipicamente l’uranio. Se vi ricordate questa newsletter, avevamo detto che gli atomi si distinguono tra loro in base al numero di protoni che li compongono: l’idrogeno ha 1 protone, l’elio ne ha 2, con 8 si fa l’ossigeno, con 26 il ferro e così via. L’uranio ne ha 92. Avevamo anche detto però che gli atomi sono formato anche da neutroni. Cambiando il numero dei neutroni di un elemento si formano i cosiddetti isotopi, ossia atomi dello stesso elemento ma con caratteristiche fisiche un po’ diverse. L’isotopo di uranio più diffuso è l’uranio-238, che ha (238 – 92) = 146 neutroni. Più del 99% dell’uranio in natura è uranio-238. L’uranio-238 è una sostanza radioattiva: con il passare del tempo i suoi atomi decadono, ossia si rompono dando vita a atomi con un numero più basso di protoni. Questo processo di rottura si chiama appunto fissione nucleare.
Quando si rompono, gli atomi di uranio-238 decadono in torio-234, che ha solo 90 protoni. Questo significa che l’uranio-238, decadendo, perde 2 protoni e 2 neutroni, che sono un nucleo di elio. I nuclei di elio sono chiamati anche particelle alfa e sono un tipo di radiazione non particolarmente pericoloso: basta un foglio di carta per fermarle.
Ovviamente più questi decadimenti avvengono velocemente, più vengono emesse radiazioni e più queste diventano pericolose.
Per determinare quanto l’uranio è radioattivo si calcola quindi il cosiddetto tempo di dimezzamento, ossia il tempo che ci mettono metà degli atomi di uranio a trasformarsi in torio, emettendo radiazioni alfa.
Il tempo di dimezzamento dell’uranio-238 è di circa 4,5 miliardi di anni. Se avete un chilo di uranio-238, dovrete aspettare tutto quel tempo affinché mezzo chilo si trasformi in torio.
Tra le sostanze radioattive, quindi, l’uranio-238 non è tra i più radioattivi. Emette radiazioni da cui è abbastanza facile schermarsi e il suo tempo di dimezzamento è piuttosto lungo.
Giusto per fare un confronto, un altro isotopo dell’uranio, l’uranio-239, emette radiazioni molto più pericolose (elettroni e positroni ad alta energia, detti anche particelle beta) e ha un tempo di dimezzamento di soli 23 minuti. Come vedete, l’uranio-239 e l’uranio-238 hanno solo un neutrone di differenza, eppure hanno caratteristiche molto diverse tra loro.
Nelle centrali nucleari si usa solitamente una miscela di due isotopi di uranio, l’uranio-238 e l’uranio-235, chiamata “uranio arricchito”, oppure una miscela di uranio e plutonio chiamata MOX.
Cosa accade nel nocciolo della centrale
Una volta preparata la miscela di combustibile, la si inserisce nel nocciolo della centrale nucleare e si cerca di innescare una reazione a catena: l’uranio arricchito viene bombardato con dei neutroni, per facilitarne la rottura. Gli atomi di uranio colpiti dai neutroni si spezzano quindi in torio, particelle alfa ad alta energia e altri neutroni, che a loro volta colpiscono altri atomi di uranio, replicando il processo.
Per facilitare l’innesco della reazione a catena, però, i neutroni devono essere rallentati alla giusta velocità. Per questo il nocciolo è immerso in una sostanza chiamata moderatore. Solitamente il moderatore utilizzato è il deuterio, conosciuto anche come acqua pesante.
Una volta innescata la reazione, però, i frammenti del processo di fissione, rallentando nel combustibile, generano calore che viene asportato da un fluido refrigerante: è l’acqua di cui parlavamo all’inizio, che raffredda il nocciolo scaldandosi e si trasforma in vapore, mettendo in moto la turbina.
La reazione a catena riesce quindi a liberare una grande quantità di energia: se un chilogrammo di carbone produce circa 8 kWh di energia, un chilogrammo di uranio-235 può produrne più di 20 milioni.
Fissione nucleare e fusione nucleare
Il processo di fissione è lo stesso che fu usato nelle bombe atomiche che colpirono Hiroshima e Nagasaki. Tuttavia, mentre nelle bombe nucleari la fissione avviene in modo incontrollato, nelle centrali nucleari la reazione viene controllata. Per controllare la reazione è necessario utilizzare una sostanza in grado di assorbire la maggior parte dei neutroni prodotti, così da limitare l’effetto catena. Nella miscela di uranio arricchito di cui abbiamo parlato, mentre l’uranio-235 partecipa attivamente alla fissione, l’uranio-238 ha proprio la capacità di assorbire i neutroni in eccesso, trasformandosi in uranio-239,che decade poi in plutonio-239.
Nonostante si usino principalmente uranio e plutonio, esistono molti altri elementi radioattivi in natura, come ad esempio il radon, il francio, l’astato o il polonio. Quest’ultimo è piuttosto famoso, in quanto fu usato nel 1998 per avvelenare a morte il dissidente russo Aleksandr Val’terovič Litvinenko.
C’è un ultimo appunto da fare. Esiste un altro tipo di reazione nucleare, chiamato fusione. È la reazione nucleare che avviene nelle stelle, produce molta più energia della fissione e non lascia alcun tipo di scoria radioattiva. Perché non usiamo la fusione anziché la fissione? Ne parliamo la prossima settimana.
Pillole
Alcune notizie di questi giorni, in breve.
104 satelliti in orbita con un solo lancio
L’India ha messo in orbita con un solo lancio 104 satelliti. È stato utilizzato il razzo Polar Satellite Launch Vehicle, che ha trasportato principalmente piccoli satelliti per rilevazioni della superficie terrestre e la raccolta di dati meteorologici. Un video della messa in orbita è qua.
La NASA e Marte
La NASA sta valutando la possibilità di utilizzare degli astronauti durante il primo lancio dello SLS, un nuovo sistema di lancio in fase di progettazione che dovrebbe essere inaugurato nei prossimi anni. Maggiori informazioni qui.
Forse si possono migliorare i telescopi
Dei ricercatori dell’Università di Toronto sono riusciti a migliorare in laboratorio la risoluzione di microscopi e telescopi. Quando le lenti inquadrano degli oggetti piccoli e molto vicini tra loro, non riescono a distinguerli a causa della diffrazione della luce nella lente: anziché vedere due puntini luminosi, si vede un unico oggetto sfocato. I ricercatori sono riusciti ad aumentare la risoluzione delle lenti sfruttando una caratteristica fisica dei raggi luminosi, chiamata fase. Non è ancora chiaro se si riuscirà a implementare questa nuova tecnica al di fuori degli ambienti controllati del laboratorio.
La fisica di Ale
La striscia di oggi. I fumetti di Alessandro sono su Vuoto Comico.
Per approfondire
– Che cos’è la massa critica?
– Come funziona una centrale nucleare (articolo)
– La fissione nucleare, spiegata da Rai Educational (video)
– La fissione nucleare, spiegata da Alessandro Cecchi Paone (video)
Il paradosso EPR
Settimana interessante. Un gruppo di ricerca ha fatto un annuncio piuttosto importante per chi si occupa di superconduttori. Ne parliamo nelle pillole. Oggi proviamo anche a rispondere a un po’ di domande lasciate in sospeso la volta scorsa: per capire di cosa parliamo, fa molto comodo sapere cos’è l’entanglement.
Prima di cominciare però, ecco una nuova puntata di Storie, il podcast in cui intervisto giovani ricercatori in fisica. Stavolta trovate una chiacchierata con Zeno Tornasi, dell’Università di Glasgow. Si occupa di onde gravitazionali, ma in una maniera inaspettata.
Per scaricare o ricevere il podcast sul telefono potete utilizzare l’app Spreaker Podcast Radio, oppure la vostra app preferita (come iTunes o altre) utilizzando gli RSS del podcast.
Ah, ho comprato un nuovo microfono, ma ci sto ancora prendendo la mano. Portate pazienza se l’audio non è ancora ottimale. Con il tempo migliorerò.
Ascolta 3. Le onde gravitazionali” su Spreaker.
(Conosci qualche dottorando in fisica che sarebbe bello intervistare? Scrivimi. Nel frattempo clicca play)
Se vi piacciono la newsletter e il podcast, potete invitare un vostro amico a iscriversi.
Se avete domande o suggerimenti, scrivetemi a spacebreak [at] francescobussola.it
Le vecchie newsletter sono qui.
Di cosa parliamo oggi
– riassuntino della puntata precedente
– il paradosso EPR
– correlazione e causalità
– la completezza e le disuguaglianze di Bell
– pillole
Riassuntino
La volta scorsa abbiamo parlato dell’entanglement, un fenomeno fisico di difficile comprensione, per il quale due particelle, quando vengono preparate nello stesso stato quantistico, riescono a influenzarsi istantaneamente a vicenda anche a grandi distanze. Ci siamo lasciati con tante domande: come fanno a interagire istantaneamente a distanza? Possiamo sfruttare questo fenomeno per creare un moderno telegrafo senza fili? E se queste particelle riescono a influenzarsi istantaneamente, significa che si scambiano un segnale a velocità superiori a quella della luce, anche se la Relatività dice che non si può? Abbiamo per caso trovato un controesempio alla teoria di Einstein?
Non sono domande semplici: ne hanno dibattuto per anni i fisici migliori, tra cui Einstein, Podolsky e Rosen. Proprio grazie a loro, questa apparente violazione della teoria della relatività prende il nome di paradosso EPR.
Il paradosso EPR
L’entanglement infatti, ancor prima di essere verificato sperimentalmente, fu pensato concettualmente da Einstein, Podolsky e Rosen: era concettualmente possibile preparare una coppia di particelle nello stesso “stato fisico”, era possibile separarle mettendole in due luoghi distanti, era possibile misurare le proprietà fisiche di una delle due e istantaneamente questa misura avrebbe influenzato le proprietà fisiche dell’altra, ma forse questo comportamento era una violazione di leggi fisiche note.
Vi ricordate i due elettroni di cui abbiamo parlato nella scorsa newsletter? Dicevamo che, provando a misurare lo spin di uno di questi – trovando come risultato spin su – avremmo influenzato lo spin dell’altro, che si sarebbe orientato in giù.
Occhio però
Ora, alcuni di voi potrebbero pensare la seguente cosa, ossia che in realtà i due elettroni avevano già prima della misura o spin su o spin giù e che, al momento della misura, noi non abbiamo fatto altro che scoprire una cosa che ancora non sapevamo. Però non è così: non è corretto e non è vero dire che prima c’era già un elettrone con spin su e uno con spin giù, ma che noi non lo sapevamo. Vi ricordate l’esperimento della doppia fenditura, in cui una particella sembrava comportasi come un’onda del mare, passando per entrambe le fessure? In quel caso non potevamo dire che la particella era passata a sinistra o a destra. L’unico modo per spiegare l’esistenza di una figura di interferenza era di accettare che le particelle, in alcune circostanze, non si comportano come palline, ma come onde.
Ecco, nel caso dell’entanglement accade la stessa cosa, solo che stavolta la grandezza fisica coinvolta non è la posizione degli elettroni, ma il loro spin. Prima di misurarlo gli elettroni non hanno uno spin definito: si trovano in una sovrapposizione di stati quantistici, in un miscuglio di possibili spin, il cui valore è determinato solo da leggi probabilistiche.
Correlazione e causalità
Come vi ho già accennato all’inizio, però, il fatto che il valore dello spin dei due elettroni risulta correlato istantaneamente anche a grandi distanze, sembra violare una delle leggi più importanti della Relatività: nulla può viaggiare più veloce della luce. Come fa il secondo elettrone a sapere istantaneamente che gli scienziati hanno misurato lo spin del primo, adeguando il suo spin di conseguenza? C’è un segnale che passa da un elettrone all’altro? E questo segnale è più veloce della luce?
Per capire cosa succede bisogna imparare a distinguere due concetti simili, ma diversi: la correlazione tra due eventi e il rapporto causa-effetto.
Guardate ad esempio questo grafico. Mostra l’andamento di due serie di dati, dal 1999 al 2009: il numero di dottorati in sociologia negli Stati Uniti e le morti causate dagli anticoagulanti.
Come vedete le due serie di dati sono evidentemente correlate: quando aumentano i dottorati, aumentano le morti e viceversa. Eppure ci rendiamo conto, senza bisogno di discuterne troppo, che tra le morti per anticoagulanti e il numero di dottorati assegnati negli Stati Uniti non c’è alcun rapporto causa-effetto.
Nella vita quotidiana, quando vediamo una correlazione senza un rapporto causa-effetto, diciamo che si tratta di un caso, di una coincidenza.
Ecco, nel caso dell’entanglement siamo di fronte a una correlazione, senza alcun tipo di rapporto causa-effetto. L’unica differenza con la vita quotidiana è che la correlazione tra i due elettroni di cui abbiamo parlato non è avvenuta “per caso”, ma è dovuta a come abbiamo preparato i due elettroni all’inizio dell’esperimento.
Se sentite di non aver capito a fondo la questione, non preoccupatevi. È un argomento molto difficile e io stesso sto facendo molta fatica per trovare le parole giuste, cercando di dire cose corrette senza usare termini troppo tecnici.
Il punto centrale della questione è però questo: possiamo usare l’entanglement per creare un efficientissimo telegrafo senza fili e mandare istantaneamente dei messaggi da una parte all’altra dell’universo, violando le regole della Relatività? No.
Ora vi convinco
Prendete i due elettroni, preparateli affinché siano correlati come abbiamo spiegato nella scorsa newsletter e separateli: uno rimane nei laboratori di Roma, l’altro va a Tokyo. Ora gli scienziati di Roma e di Tokyo si accordando: quelli di Roma misureranno lo spin prima di quelli di Tokyo e proveranno in questo modo a inviare un messaggio a Tokyo.
Gli scienziati di Roma quindi provano a misurare lo spin del primo elettrone. Supponiamo che trovino spin su. Ora gli scienziati di Tokyo misurano lo spin del secondo elettrone: ovviamente trovano spin giù. È il primo pezzo del messaggio.
Ora, per iniziare nuovamente bisogna ricominciare da capo: si preparano due elettroni correlati e li si separano, uno resta a Roma e l’altro va a Tokyo.
Gli scienziati di Roma misurano nuovamente lo spin. Stavolta trovano spin giù. Ora tocca agli scienziati di Tokyo: ovviamente trovano spin su. È il secondo pezzo del messaggio.
Ripetono questa operazione mille volte. Cosa accadrà? Beh, siccome il risultato della misura è probabilistico, gli scienziati di Roma misureranno circa il 50% delle volte spin su e il restante 50% spin giù. Un po’ come tirare una monetina.
Siccome i due elettroni sono correlati tramite l’entanglement, gli scienziati a Tokyo avranno trovato una serie inversa di risultati: ogni volta che a Roma hanno trovato spin su, loro hanno misurato spin giù e viceversa. Comunque sia il risultato è lo stesso: 50-50.
Come vedete, da Roma non hanno alcun modo di codificare un messaggio, di inviare una serie di bit o di creare un alfabeto.
Ma c’è di più. Mettetevi per un attimo nei panni degli scienziati di Tokyo. Come fanno a sapere che quelli di Roma hanno effettivamente misurato ogni volta lo spin prima di loro? E se li avessero imbrogliati? D’altronde loro hanno trovato il 50% delle volte spin giù e il restante spin su, così come sarebbe potuto accadere se fossero stati loro i primi a fare le misure. Come vedete, non c’è modo di distinguere se le misure fatte sono un evento naturale o il risultato di una correlazione.
L’unico modo per verificare che i due elettroni fossero veramente correlati è quello di scambiarsi i foglietti in cui gli scienziati di Roma hanno segnato “su, giù, giù, su, su, su, su, giù, …” e gli scienziati di Tokyo hanno segnato “giù, su, su, giù, giù, giù, giù, su, …”. Solo allora noteranno la correlazione tra i dati e quindi tra gli elettroni.
In linguaggio fisico
I fisici esprimono questi concetti dicendo che l’entanglement, ossia la correlazione quantistica tra due eventi, viola la località: è possibile trovare o creare delle correlazioni tra eventi molto distanti, anche istantaneamente.
Però, non viene violata una legge ancora più importante, ossia la causalità: tra i due eventi, anche se correlati, non c’è alcun rapporto causa-effetto. Non c’è alcun segnale più veloce della luce. Non si può mandare alcun messaggio.
La completezza e le disuguaglianze di Bell
Direi che ci possiamo fermare qui, per oggi. C’è però un’altra grande questione che nasce dal paradosso EPR e che può interessare alcuni di voi: la Meccanica quantistica è una teoria completa? Ossia, è la natura ad avere un comportamento probabilistico oppure ci sfugge qualcosa ed esiste invece una teoria più completa, magari con delle variabili nascoste che non riusciamo a vedere? Sembra una domanda più filosofica che scientifica, ma in realtà è una domanda concettuale, perché riguarda l’interpretazione che diamo alle leggi matematiche usate per descrivere i fenomeni naturali.
La cosa interessante è che nel 1964 il fisico John Stewart Bell provò a rispondere a questa domanda in maniera scientifica: formulò delle disuguaglianze matematiche – le disuguaglianze di Bell – e propose un esperimento per verificarle. Se le disuguaglianze fossero state verificate dagli esperimenti, sarebbe stata una prova che la Meccanica quantistica non era completa. Altrimenti si sarebbe dovuto accettare che la natura si comporta in maniera probabilistica e che in natura possono esistere correlazioni a distanza, senza alcun rapporto di causa-effetto (come l’entanglement).
Tutti gli esperimenti fatti a partire dagli anni ’80 hanno mostrato una violazione delle disuguaglianze di Bell: si ritiene quindi che la Meccanica quantistica sia una teoria completa e che sia invece la natura ad avere un comportamento probabilistico.
Pillole
Alcune notizie di questi giorni, in breve.
Idrogeno metallico
Un gruppo di ricerca di Harvard sostiene di essere riuscito a produrre l’idrogeno metallico. L’idrogeno metallico è il sogno di chi si occupa di fisica dello stato solido, perché, se potessimo utilizzarlo a temperatura ambiente, si comporterebbe come un superconduttore. Il problema però è fabbricarlo: l’idrogeno, a temperatura ambiente, si comporta solitamente come un gas. Se ciò che sostengono i ricercatori è vero, l’idrogeno metallico sarebbe prodotto in condizioni estreme di pressione e temperature, ma si troverebbe poi in uno stato metastabile, e sarebbe possibile utilizzarlo in condizioni meno estreme. Avevamo parlato dei superconduttori qui.
Osservata un’asimmetria tra materia e antimateria barionica
A LHCb, uno dei grandi esperimenti svolti al CERN di Ginevra, è stata misurata per la prima volta una asimmetria tra materia e antimateria barionica. I barioni sono una gruppo di particelle, tra i quali ci sono anche i neutroni e i protoni. Per ognuna di queste particelle esiste un’antiparticella. Da tempo si ritiene che la fisica delle particelle barioniche sia, sotto alcuni aspetti, diversa dalla fisica delle antiparticelle barioniche: questa differenza di comportamento viene chiamata appunto asimmetria. Maggiori info qui.
Super-Kamiokande
Non è una notizia, ma pazienza: qui trovate un gran bell’articolo sul rilevatore di neutrini Super-Kamiokande. L’anno scorso avevamo parlato di un altro rilevatore di neutrini: DUNE.
Un film su LIGO, ecco il trailer
Esce il 7 febbraio un film sulla rilevazione delle onde gravitazionali. Ecco il trailer.
La fisica di Ale
La striscia di oggi. I fumetti di Alessandro sono su Vuoto Comico.
Per approfondire
– L’articolo originale di Einstein, Podolsky e Rosen
– Dalla Meccanica quantistica alle disuguaglianze di Bell (video in italiano)