La radiazione di Hawking e il quantum spin liquid
Perché Hawking è così famoso? Per la sua vita straordinaria, certo, ma anche per aver derivato uno dei più importanti risultati della fisica moderna: la radiazione di Hawking. C’entrano i buchi neri e la Meccanica quantistica.
Per chi volesse leggere le vecchie newsletter, le trova tutte sul mio sito o su medium. Space break ha anche una pagina facebook e un account twitter, dove pubblico di tanto in tanto curiosità e approfondimenti.
Di cosa parliamo oggi
– chi è Stephen Hawking
– la radiazione di Hawking
– pillole della settimana
Chi è Stephen Hawking
Stephen Hawking è un fisico britannico. Nato nel 1942, da quando ha 21 anni è affetto da SLA, una malattia neurodegenerativa. A Hawking vennero dati due anni di vita. La vita media di una persona affetta da SLA è tra i due e i cinque anni e meno del 5% dei malati sopravvive per più vent’anni. Hawking oggi ha 74 anni ed è sopravvissuto per così a lungo che la sua malattia sembra essersi stabilizzata. Pur non riuscendo a muovere il suo corpo atrofizzato e dovendo comunicare attraverso un sintetizzatore vocale, ha una mente ancora particolarmente brillante. Discute di scienza e religione e continua a fare divulgazione scientifica e ricerca di buona qualità. Il suoi risultati più importanti sono stati raggiunti negli anni ’70. Nel 1971 ha contribuito a dimostrare il cosiddetto “No-hair theorem”, un teorema matematico che riguarda i buchi neri e le loro proprietà fisiche. Nel 1974 ha teorizzato l’esistenza di una radiazione termica proveniente dai buchi neri: la radiazione di Hawking. Ne parliamo oggi.
I buchi neri, in tre righe
I buchi neri sono oggetti celesti con una grande massa che riescono ad attirare ed intrappolare ogni cosa, compresa la radiazione elettromagnetica. Insomma, mangiano tutto. Siccome anche la luce non riesce a uscire, non li vediamo brillare. Sono neri, appunto.
La radiazione di Hawking
Nonostante dal punto di vista classico, ossia secondo la Teoria della Relatività Generale, nulla può uscire da un buco nero, Hawking ha dimostrato che gli effetti quantistici permettono ai buchi neri di emettere una radiazione. In sostanza si tratta di una radiazione termica che si comporta come se fosse emessa da un corpo nero a una certa temperatura.
Cos’è un corpo nero
Un corpo nero in fisica è quello che dice di essere: un corpo completamente nero che assorbe tutta la radiazione elettromagnetica che lo colpisce, senza rifletterla. Riesce però a emettere una radiazione termica, che dipende dalla sua temperatura. Un corpo nero è considerato solitamente un oggetto ideale, perché ci si aspetta che un qualsiasi materiale rifletta un po’ di luce, ma è un utile modello che viene spesso usato quando si studiano i fenomeni elettromagnetici.
Che c’entra con i buchi neri
Ecco, Hawking ha dimostrato che i buchi neri, che non sono un materiale ma degli oggetti celesti, si comportano come un corpo nero: nonostante “mangino tutto”, compresa la radiazione elettromagnetica, riescono a emettere una radiazione termica, come se questa fosse emessa da un corpo nero ad una certa temperatura. In questo caso la temperatura dipende dalla massa del buco nero.
Questa radiazione emessa è chiamata a volte evaporazione, perché fa perdere energia al buco nero e dunque gli fa perdere massa. Perciò se il buco nero non mangiasse nulla per molto tempo, continuerebbe a “evaporare”, rimpicciolendosi fino a scomparire.
Come si arriva a questo risultato
La dimostrazione dell’esistenza di questa radiazione fa uso dei principi della Meccanica quantistica, applicati nell’ambito della Teoria della Relatività. Abbiamo detto più volte che Meccanica quantistica e Relatività non vanno molto d’accordo: dove funziona una teoria, fallisce l’altra e viceversa. Tuttavia negli anni si sono trovati dei modi per utilizzarle insieme. Esiste una teoria che permette di unificare la Meccanica quantistica con la Relatività Speciale. Questa teoria, chiamata Teoria quantistica dei campi (Quantum field theory) è molto complicata, ma ha permesso di ricavare il Modello Standard delle particelle elementari. Insomma, è la Teoria che ha reso possibile l’esperimento del CERN e tutte le scoperte fisiche degli ultimi sessant’anni. La Teoria dei campi funziona però solo con la Relatività Speciale, non con la Relatività Generale, ossia funziona quando si trascurano gli effetti della gravità. Questo significa che non abbiamo ancora una teoria fisica in grado di descrivere tutti i fenomeni quantistici e la gravità. In particolare non siamo in grado di descrivere il comportamento quantistico della gravità stessa. Se si trovasse una teoria di questo tipo, sarebbe quella che i fisici chiamano La teoria del tutto, perché sarebbe in grado di spiegare tutti i fenomeni naturali in modo coerente.
Nonostante non siamo in grado di spiegare a fondo il comportamento quantistico della forza di gravità, è possibile però applicare la Teoria dei campi anche in presenza di gravità. È la cosiddetta Teoria dei campi in spaziotempo curvo. Non è una teoria completa, perché la gravità fa in qualche modo da spettatore ai processi fisici in gioco, ma ci permette di studiare alcuni fenomeni quantistici anche quando c’è la gravità – anche vicino a un buco nero, ad esempio.
Le particelle virtuali e la radiazione di Hawking
Molto spesso per spiegare la radiazione di Hawking viene utilizzato il concetto di particella virtuale. Le particelle virtuali sono in generale particelle che violano alcuni principi fisici, come il principio di conservazione o il principio di causalità. Per questo non sono considerate particelle vere e proprie. Si usano perché saltano fuori nella Teoria dei campi quando si fanno alcuni conti, ma la loro esistenza in natura è una questione più filosofica che scientifica.
Comunque sia, spesso la radiazione di Hawking viene spiegata utilizzando le particelle virtuali. Vicino al buco nero si formano e si distruggono continuamente delle coppie di particelle virtuali con energia nulla. A volte però queste coppie di particelle si dividono: una particella cade nel buco nero e una fugge da esso. Delle due, la seconda, allontanandosi dal buco nero, diventa reale ed in teoria è possibile misurarla: è quella che crea la radiazione di Hawking. La prima invece cade nel buco nero e non la vediamo più. Siccome poi la coppia aveva energia totale nulla e la particella uscente ha energia positiva, per la conservazione dell’energia si dice che le particelle virtuali cadute nel buco nero hanno energia negativa e sono quindi loro che fanno diminuire l’energia – ossia la massa – del buco nero, facendolo rimpicciolire.
Tuttavia questa descrizione, anche se evocativa e in un certo senso intuitiva, è sbagliata: in Teoria dei campi in spaziotempo curvo, ossia quando anche la gravità è in gioco, non è possibile definire chiaramente cosa sia una particella. La definizione di particella è chiara quando la gravità è spenta, ma quando la gravità è accesa perde di significato. Hawking stesso non utilizza le particelle virtuali negli articoli tecnici. Insomma, è possibile ottenere i risultati sulla radiazione di Hawking in maniera rigorosa senza utilizzare il concetto di particella virtuale, che è solo un espediente divulgativo.
La radiazione di Hawking è stata misurata?
No, e per un motivo molto semplice: i buchi neri sono difficili da trovare e sono molto distanti da noi. Non abbiamo ancora la tecnologia per avvicinarci a un buco nero e misurare la radiazione di Hawking. Tuttavia è possibile fare degli esperimenti in laboratorio per simulare il comportamento di un buco nero utilizzando fluidi o fibre ottiche. In questi esperimenti sono stati osservati dei comportamenti compatibili con la radiazione di Hawking.
Pillole della settimana
Alcune notizie di questi giorni, brevi.
Scoperto un nuovo stato della materia
I fisici hanno osservato, in un materiale di Cloruro di rutenio, un nuovo stato della materia che era stato previsto una quarantina di anni fa, chiamato quantum spin liquid. Si tratta di un liquido fatto di elettroni a temperature prossime allo zero assoluto (-273 °C). Solitamente a temperature così basse gli elettroni tendono ad allinearsi in maniera particolare. In questo caso invece non lo fanno. Questo nuovo stato della materia potrebbe servire in futuro per sviluppare i computer quantistici, ma è troppo presto per dirlo con certezza. Trovate tutto qui.
Nuovo test per New Shepard, il lanciatore di Blue Origin
Terzo test per Blue Origin, la compagnia di Jeff Bezof che sta sviluppando dei lanciatori per il turismo spaziale. New Shepard è salito fino a 103 Km di quota, per poi riatterrare verticalmente a terra. Guardate il video perché è fantascienza: New Shepard ha riattivato i motori a 1 Km da terra, decelerando paurosamente.
Le scoperte di NEOWISE
La missione NEOWISE (Near-Earth Object Wide-field Survey Explorer) della NASA per la ricerca di asteroidi vicini alla terra ha rilasciato nuovi dati. Dalla sua riattivazione NEOWISE ha scoperto 250 nuovi oggetti, di cui 72 vicini alla terra, e 4 nuove comete. I dettagli e un video di spiegazione sono qui.
Feedback
Aspetto le vostre opinioni e domande a spacebreak [at] francescobussola.it
Se vi fa piacere potete far conoscere la newsletter a un amico inoltrandola o suggerendogli di iscriversi.
Per approfondire
– la radiazione di Hawking, spiegata in termini di particelle virtuali
– perché non abbiamo una foto di un buco nero (video in inglese)
– il paradosso dell’informazione dei buchi neri
I buchi neri, LIGO e le onde gravitazionali
La settimana scorsa abbiamo parlato della Relatività e siamo pronti a capire cosa sono i buchi neri. Qui trovate le scorse newsletter, qui la pagina facebook e qui l’account twitter di Space break.
Oggi però è anche un giorno importante per la fisica. Forse sono state rilevate per la prima volta le onde gravitazionali e c’è un’attesa conferenza stampa oggi pomeriggio.
Se vi piace questa newsletter potete farla conoscere a un amico inoltrando la mail o suggerendogli di iscriversi.
Di cosa parliamo oggi
– cosa sono i buchi neri
– vedere i buchi neri (ma esistono davvero?)
– forse LIGO ha rilevato le onde gravitazionali
Cosa sono i buchi neri
Come abbiamo detto l’altra volta, secondo la Relatività l’universo “poggia” – per così dire – su una struttura intangibile chiamata spaziotempo che possiamo immaginare come un lenzuolo steso. La presenza di un corpo, come ad esempio un pianeta, una stella, una galassia o un comodino deforma il lenzuolo creando delle conche. Quando gli oggetti finiscono vicino a queste conche, ci cadono dentro come in questa animazione (si ingrandisce cliccando).
La gravità quindi non è considerata una forza vera e propria, ma l’effetto di una deformazione geometrica dell’universo. È una descrizione strana, ma incredibilmente efficace e in accordo con gli esperimenti.
Abbiamo anche detto che pure i raggi di luce, che si spostano seguendo la griglia dello spaziotempo, cadono in queste conche e il loro percorso viene deviato dalla curvatura.
Più un corpo ha massa, più la sua conca è profonda, più facilmente devia le traiettorie degli altri corpi e della luce. Quindi la conca fatta dal Sole è più profonda di quella fatta dalla Terra, che è più profonda di quella fatta da una mongolfiera, che è più profonda di quella fatta da una pulce.
Per chi si è perso e per chi non c’era, rimando alla scorsa newsletter.
La velocità di fuga e il raggio di Schwarzschild
Per non cadere in una conca, un oggetto deve superare la cosiddetta velocità di fuga. La velocità di fuga è insomma la velocità necessaria per sfuggire alla gravità di un pianeta o di una stella, senza caderci addosso. Ad esempio sulla superficie della Terra la velocità di fuga è pari a 40’320 Km orari. Più ci si allontana dalla Terra però, meno si sente la gravità e la velocità di fuga diminuisce: a 9 mila chilometri dalla superficie, la velocità di fuga è 25’560 km orari. Quando mandiamo un oggetto nello spazio utilizziamo dei razzi che accelerano fino alla velocità di fuga e che possono poi viaggiare senza propulsione.
Anche la luce, per riuscire a sfuggire a una conca gravitazionale, deve superare la velocità di fuga. Tuttavia di solito non è un problema: la velocità della luce nel vuoto è enorme: circa 300’000 Km al secondo. E infatti riusciamo a mandare segnali luminosi nello spazio senza preoccupazioni.
Esiste però una distanza dai pianeti o dalle stelle, chiamata raggio di Schwarzschild, entro la quale anche la luce rimane intrappolata (la parola “raggio” va intesa in senso geometrico, come il raggio di un cerchio o di una bicicletta). Quale sarebbe questa distanza nel caso della Terra? Per la Terra – la cui massa è quasi 6 milioni di miliardi di miliardi di Kg – il raggio di Schwarzschild è poco più di 8 millimetri, per la precisione 8,869 millimetri. Cosa significa? Significa che se tutta la massa della Terra fosse compressa in una pallina con un raggio, supponiamo, di 8 millimetri, una volta arrivata a una distanza inferiore o uguale a 0,869 millimetri dalla superficie della Terra, anche la luce non potrebbe più sfuggire. E poiché nessun corpo può andare più veloce della luce, nulla può uscire dal raggio di Schwarzschild.
Fortunatamente non è così: la Terra non è condensata in una pallina piccolissima e il raggio di Schwarzschild, nel nostro caso, non c’è. Questo ci permette di mandare segnali elettromagnetici nello spazio senza problemi.
Cosa accade però quando una grande quantità di massa, per qualche motivo, si compatta in una pallina piccolissima?
I buchi neri non sono buchi
Quando una grande massa si compatta in un volume piccolo lo spaziotempo si deforma molto, ossia la conca si fa sempre più profonda, come in questa immagine.
Perciò, a parità di distanza dalla pallina, la curvatura dello spaziotempo, ossia la gravità, diventa sempre più forte e la velocità di fuga necessaria per sfuggire dalla buca è sempre più alta.
Se la pallina in cui è compattata la materia è estremamente piccola allora ha senso parlare del raggio di Schwarzschild – la distanza entro la quale nemmeno la luce può sfuggire. Alla distanza prevista dal raggio di Schwarzschild si crea una superficie sferica chiamata orizzonte degli eventi, qui rappresentata da quel semicerchio nero.
Tutti gli eventi che accadono dentro l’orizzonte degli eventi, ossia entro il raggio di Schwarzschild, non possono essere osservati da fuori. Questo accade perché nemmeno la luce può uscire: da quel punto in poi un osservatore esterno vede solo una sfera nera e nulla più. Questo è il buco nero.
Come avete capito, però, non è propriamente un buco, ma una parte di universo da cui nulla può uscire e che non possiamo osservare.
Come vedere i buchi neri, se esistono
I buchi neri quindi non si possono vedere per un motivo molto semplice: sono neri. Quando osserviamo il cielo riusciamo a vedere tutti gli oggetti che emettono onde elettromagnetiche: luce visibile, ad esempio, ma anche raggi infrarossi, ultravioletti, segnali radio e così via. Tutti questi segnali viaggiano alla velocità della luce, raggiungono la Terra e possono essere captati dall’occhio umano o da delle antenne. I buchi neri, però, “mangiano” tutto, anche questi segnali, e non ne emettono. Come facciamo allora a sapere che esistono? E come possiamo vederli? (Bonus: in realtà crediamo che i buchi neri possano emettere qualcosa – la radiazione di Hawking – ma ne parleremo un’altra volta)
Cercare cosa manca
Dato che non possiamo vederli direttamente, un metodo per cercare i buchi neri è puntare un telescopio dove si crede che ci possa essere un buco nero e vedere se manca qualcosa. Secondo le teorie moderne, al centro di ogni galassia si trova un buco nero supermassiccio. Negli anni novanta è stato quindi puntato un telescopio al centro della nostra Galassia, la Via Lattea. Dopo anni di osservazione, ecco cosa è stato visto (si ingrandisce cliccando).
La stella segnata dal tracciato giallo si chiama S2 e sta girando intorno a qualcosa che non si vede. Per dare un’idea di quanto veloce stia andando, il righello in alto a destra (10 giorni luce) equivale a 259 miliardi di chilometri. Cosa c’è lì al centro? Dai calcoli dell’orbita si è stimato che l’oggetto misterioso attorno al quale S2 sta girando ha una massa pari a 3,7 milioni di Soli. Secondo le teorie moderne un oggetto così grande che non emette radiazione può essere solo un buco nero.
Gli astronomi hanno trovato evidenze simili anche al centro di altre galassie, sempre studiando il moto del materiale che orbita attorno al loro centro.
Cercare cosa scompare
Certo i buchi neri non si trovano solo al centro delle galassie: nulla vieta che ce ne siano altri da altre parti. Per trovarne bisogna essere molto fortunati – osservando per caso fenomeni spiegabili soltanto dalla presenza di un buco nero – oppure usare un po’ di astuzia e osservare le supergiganti rosse.
Una supergigante rossa è una stella che ha quasi completato il suo processo di fusione ed è “in fine vita”. Una volta terminati i processi di fusione può esplodere e diventare una supernova oppure può formare un buco nero. Gli astronomi da tempo osservano con attenzione decine di supergiganti rosse. L’idea è semplice: se improvvisamente scompaiono, potrebbe essersi formato un buco nero.
È quello che è accaduto a un paio di stelle l’anno scorso. Un attimo prima c’erano, un attimo dopo non c’erano più. Non è detto che siano diventate dei buchi neri, però. Le stelle potrebbero avere una luminosità molto variabile o potrebbero essere finite dietro un ammasso di polveri e detriti. Non possiamo fare altro che continuare ad osservarle e pazientare.
LIGO ha rilevato le onde gravitazionali, si dice
LIGO è un importante esperimento pensato per rilevare le onde gravitazionali. È formato da due rilevatori – uno in Lousiana e uno nello stato di Washington – che funzionano come delle antenne.
Nella prossima newsletter parleremo delle onde gravitazionali. Per ora ci accontentiamo di sapere che sono delle increspature nello spaziotempo predette da Einstein ormai cento anni fa, che quasi tutta la comunità scientifica crede nella loro esistenza e che sono molto sfuggenti. Chi vuole saperne un po’ di più può guardare questo video su youtube, attivando i sottotitoli in italiano.
Da tempo si mormora che LIGO abbia captato qualcosa di interessante, ma le voci si sono fatte più forti da quando lo staff di LIGO (composto da circa mille collaboratori sparsi in tutto il mondo) ha invitato tutta la comunità scientifica a una conferenza stampa per “fornire aggiornamenti sulla ricerca delle onde gravitazionali”.
Se LIGO avesse trovato le onde gravitazionali sarebbe una notizia epocale anche se, ricordo, i dati dovranno passare il vaglio della comunità scientifica per una conferma definitiva. Ciò che renderebbe comunque molto promettente la possibile scoperta è che i dati di LIGO sono analizzati da molti gruppi di ricerca che partecipano alla collaborazione scientifica. L’appuntamento per la conferenza stampa è oggi 11 Febbraio alle 16:30. Uno streaming sarà disponibile su youtube. Seguite la pagina facebook per aggiornamenti. Se riesco faccio un livetweet su twitter.
Per approfondire
– La prima evidenza scientifica della relatività generale
– Cosa sono i micro buchi neri
– E interstellar? Un bel video di Rai Scuola