La superfluidità
Ciao! Oggi parliamo della superfluidità, uno stato della materia molto particolare. Nelle pillole della settimana parliamo invece della scoperta di un nuovo tipo di semiconduttore, del telescopio spaziale Kepler e di un mistero astronomico finalmente risolto.
Di cosa parliamo oggi
– la viscosità e i superfluidi
– l’elio liquido
– pillole della settimana
La viscosità e i superfluidi
Tutti le sostanze fluide, come ad esempio i liquidi o i gas, hanno una certa viscosità. La viscosità è un grandezza fisica che rappresenta la resistenza del fluido allo scorrimento. Insomma, più un fluido è viscoso, più fa fatica a scorrere. L’olio, ad esempio, è un fluido più viscoso dell’acqua, che a sua volta, è più viscosa dell’aria.
La viscosità non cambia solo in base al fluido che considerate, ma anche in base alla sua temperatura. Generalmente i liquidi, man mano che aumenta la temperatura, diminuiscono la loro viscosità, mentre per i gas accade il contrario.
Esistono però alcune sostanze che, a certe temperature, si comportano come se non avessero viscosità: sono i cosiddetti superfluidi.
L’elio liquido
Un esempio di superfluido è l’elio liquido. L’elio ce l’avete presente, no? È quel gas che mettiamo nei palloncini e che quando lo respiriamo fa venire una vocina da paperino.
Il motivo per cui siamo abituati a vedere l’elio sempre come un gas e mai come liquido, è che il suo punto di ebollizione è molto basso. Il punto di ebollizione è la temperatura alla quale una sostanza passa dallo stato liquido a quello gassoso e viceversa – ossia la temperatura alla quale bolle. Mentre l’acqua, in condizioni normali di pressione (1 atmosfera), bolle a 100°C, l’elio bolle a circa -269°C, che è una temperatura bassissima e difficile da raggiungere. Considerate che la temperatura più bassa raggiungibile, lo zero assoluto, equivale a -273,15°C.
Il primo che riuscì a creare l’elio liquido, portandolo a temperature così basse, fu il fisico olandese Heike Kamerlingh Onnes. Era il 1908 e tutto quello che si sapeva sui fluidi veniva dalla fisica classica di Newton. Negli anni seguenti ci si accorse però che l’elio liquido non si comportava come gli altri fluidi – i cosiddetti fluidi newtoniani: al di sotto di una certa temperatura, aveva delle proprietà spettacolari e inaspettate.
Viscosità
Sotto i -271°C l’elio liquido smette di comportarsi come un fluido normale. Questa transizione di fase è segnalata da un comportamento molto strano: le bolle dell’elio, che ha da pochissimo superato il suo punto di ebollizione, scompaiono improvvisamente e la sua superficie diventa di colpo piatta, come si vede in questa animazione.
Studiando l’elio dopo questa transizione di fase, ci si accorge che la sua viscosità è pari a zero e che si comporta come un fluido irrotazionale – ossia non si possono formare vortici e mulinelli (nota per gli esperti: in realtà si possono formare dei vortici quantistici, ma oggi non ne parlo). È diventato un superfluido.
Una delle dimostrazioni più efficaci del suo comportamento superfluido è la seguente: si prende un bicchiere con dei piccolissimi forellini e lo si riempie di elio liquido. A causa della viscosità, l’elio non riesce a uscire dai forellini. Appena l’elio diventa superfluido, ecco cosa succede (occhio alle goccioline).
Il film flow
Un altro comportamento stranissimo dell’elio superfluido è il cosiddetto film flow. Se immergiamo un oggetto nell’elio, questo lo ricopre con un film sottilissimo, una pellicola di liquido dello spessore di qualche atomo dentro la quale può scorrere l’elio stesso.
Per questo motivo, se prendiamo un contenitore bagnato di elio e lo immergiamo parzialmente nel liquido – senza però farlo affondare – comincia a riempirsi. Se poi lo solleviamo senza rovesciarlo, l’elio risale le sue pareti sconfiggendo la gravità e il contenitore si svuota da solo. Come? Così:
Trasmissione del calore
Tutti i materiali conducono calore. Alcuni sono più conduttivi e lo traferiscono velocemente da un punto a un altro, come i metalli ad esempio. Altri invece sono più isolanti e lo conducono lentamente, come il legno o la gomma. La grandezza fisica che indica la capacità di una sostanza di trasferire il calore si chiama conducibilità termica. Più la conducibilità è grande, più velocemente la sostanza trasferisce calore da un punto a un altro. Ecco, l’elio superfluido ha una conducibilità infinita. Questo significa che non è possibile che due parti del superfluido abbiano temperatura diversa, perché il calore si trasferisce istantaneamente, bilanciando le temperature. Questo è il motivo per cui, al di sotto di -271°C, le bolle spariscono di colpo: le bolle sono zone in cui il liquido è più caldo. Quando l’elio diventa superfluido, le temperature si riequilibrano e le parti più calde si raffreddano istantaneamente.L’effetto fontana
L’effetto fontana, detto anche effetto termomeccanico, è un fenomeno molto spettacolare. Immaginate di prendere un tubicino contenente polvere abrasiva e di immergere una sua estremità nell’elio superfluido. Riscaldando la polvere abrasiva, l’elio risale il tubicino per riequilibrare la temperatura, creando un getto di superfluido.
Perché c’è la superfluidità?
Il comportamento superfluido di alcune sostanze si può spiegare solo tramite le leggi della Meccanica quantistica. Purtroppo non possiamo entrare nei dettagli, perché servono conoscenze e competenze che richiedono mesi di studio. Magari riusciremo a dire qualcosa in più quando parleremo dei condensati di Bose-Einstein. Anche se non sono la stessa cosa, i due fenomeni sono imparentati in vari modi.
Pillole della settimana
Qualche notizia di questa settimana, in breve.
Scoperto un nuovo semiconduttore ferromagnetico
Degli scienziati giapponesi e vietnamiti hanno prodotto un semiconduttore ferromagnetico a temperatura ambiente utilizzando dell’antimonio dopato con atomi di ferro e gallio. I semiconduttori ferromagnetici sono importanti in elettronica perché sono facili da manipolare per trasferire e memorizzare i dati. Tuttavia hanno un limite: il loro ferromagnetismo si mantiene solo a temperature ben al di sotto dello zero. Se veramente si riuscirà ad utilizzare questo nuovo materiale a temperatura ambiente, ci potrebbero essere importanti ricadute in elettronica e in informatica.
La Red Dragon è tornata
La capsula Red Dragon di SpaceX è tornata a terra sana e salva dopo aver rifornito la ISS. Qui la foto.
Kepler trova cose
Il telescopio spaziale Kepler, in orbita dal 2009, ha scovato 1284 nuovi pianeti nella Via Lattea. Tra i nuovi pianeti scoperti, più di 500 sembrano essere rocciosi e nove di questi sono potenzialmente abitabili.
150-kilometer echoes
Gli scienziati hanno finalmente capito, dopo cinquant’anni, l’origine del fenomeno “150-kilometer echoes”. I segnali radar inviati nello spazio vengono infatti riflessi verso terra come se a 150 km di altezza ci fosse una specie di specchio che produce degli eco. Verso mezzogiorno questo immaginario specchio scende fino a 30 km di altezza, mentre di notte sparisce. L’effetto specchio è dovuto a delle vibrazioni degli ioni presenti nell’atmosfera, prodotte dalle interazioni tra gli ioni, le molecole e i fotoni provenienti dal Sole.
LHC riparte
È ripartito l’acceleratore LHC del CERN (cos’è?). Gli esperimenti di quest’anno raccoglieranno un numero di dati sperimentali sei volte maggiore dell’anno scorso. Non si aspettano grandi risultati scientifici, ma ogni risultato che si discosterà dalle previsioni del Modello standard potrebbe essere l’indicazione dell’esistenza di fenomeni fisici ancora sconosciuti.
Feedback
Se avete domande scrivete a spacebreak [at] francescobussola.it
Se vi fa piacere potete far conoscere la newsletter a un amico dicendogli che ci si iscrive qua.
Per approfondire
– Il documentario della BBC da cui ho preso le varie gif
– Un documentario BBC più recente e a colori
– I vortici quantistici in un superfluido (video)
LHC down (per colpa di una faina)
Ciao! Oggi niente lezione di fisica, perché sono un po’ preso da alcuni lavori. Ne approfittiamo per riposarci un attimo. I nuovi arrivati che vogliono leggere qualcosa sulla fisica moderna trovano le vecchie newsletter sul mio blog. Da gennaio abbiamo parlato di un bel po’ di argomenti: la Teoria della Relatività Speciale e Generale, la Meccanica quantistica, il dualismo onda-particella, le quattro forze fondamentali, il gatto di Schrödinger, la radiazione di Hawking, il modello Standard delle particelle, il CERN, il paradosso dei gemelli, i buchi neri e ovviamente le onde gravitazionali. Ce ne è per tutti i gusti.
Ci sono parecchie notizie interessanti questa settimana. Tanto per dirne alcune, l’esperimento LHC è stato fermato per colpa di una faina, i ricercatori di LIGO hanno guadagnato tre milioni di dollari, il satellite Hitomi è morto e SpaceX ha spiazzato tutti – tanto per cambiare – dicendo che vuole andare su Marte tra due anni.
Di cosa parliamo oggi
– LHC down per colpa di una faina
– tre milioni di dollari ai ricercatori LIGO
– Hitomi non ce l’ha fatta
– SpaceX su Marte nel 2018
– inaugurato un nuovo cosmodromo a Vostochny, in Russia
– il transito di Mercurio davanti al Sole
– un test per la gravità quantistica
LHC down
Il Large Hadron Collider del CERN (cos’è?) è stato spento per un paio di giorni dopo che una faina è salita sui terminali di un trasformatore elettrico, mandandolo in corto circuito. Il corto circuito ha fatto spegnere il sistema di criogenia dell’acceleratore di particelle – che è solitamente mantenuto a una temperatura di poco superiore a -273°C. Un innalzamento della temperatura anche di pochi decimi di grado sembra poca cosa, ma a temperature così basse richiede tempo per ristabilire le condizioni ottimali per gli esperimenti. Nonostante l’intoppo non ci sono state gravi conseguenze per LHC, che ieri è stato rimesso in funzione. Lo stesso non si può dire della faina, che si è presa una scarica elettrica da 66 mila volt.
Tre milioni di dollari ai ricercatori LIGO
Il fisico e milionario russo Yuri Milner – quello del progetto Breakthrough starshot – ha deciso di devolvere tre milioni di dollari ai ricercatori che hanno partecipato alla scoperta delle onde gravitazionali. Questa somma si aggiunge ai tre milioni di dollari che elargisce ogni autunno come premio per le migliori scoperte in fisica fondamentale. Dei tre milioni, uno verrà diviso dagli ideatori dell’esperimento LIGO – Kip Thorne, Rainer Weiss e Ronald Drever – mentre i rimanenti due milioni saranno distribuiti tra i mille scienziati che hanno firmato l’articolo pubblicato sul Physical Review Letters.
Hitomi non ce l’ha fatta
Da qualche settimana l’agenzia spaziale Giapponese JAXA non è più in grado di comunicare con il satellite a raggi X Hitomi, lanciato a Febbraio. Il guasto è probabilmente dovuto al completo distacco dei pannelli solari dal satellite, che è quindi inutilizzabile. JAXA ha deciso interrompere ogni tentativo di recupero. Ora sarà importante capire se la rottura è stata causata da un problema di progettazione, di costruzione o se il satellite è stato danneggiato inavvertitamente durante le fasi di trasporto e lancio. Della analisi preliminari parrebbe che si tratti di un errore di programmazione informatica: il computer di Hitomi avrebbe accelerato la rotazione del satellite, anziché rallentarla.
SpaceX su Marte nel 2018?
Una notizia che mi era sfuggita. Con un tweet SpaceX ha annunciato di voler lanciare una capsula Red Dragon su Marte entro il 2018. La missione avverrebbe senza equipaggio, ma la notizia, che ha colto tutti di sorpresa, rafforza le impressioni che SpaceX e la NASA possano presto collaborare per una missione su Marte.
Planning to send Dragon to Mars as soon as 2018. Red Dragons will inform overall Mars architecture, details to come pic.twitter.com/u4nbVUNCpA
— SpaceX (@SpaceX) 27 aprile 2016
La capsula Red Dragon è un veicolo spaziale progettato per effettuare missioni di atterraggio su Marte in assenza di equipaggio. Queste missioni, oltre ad avere obiettivi scientifici, serviranno a sperimentare le tecnologie necessarie per far atterrare dei grandi carichi sul pianeta senza l’utilizzo di un paracadute.
Un nuovo centro spaziale in Russia
Giovedì scorso è stato inaugurato un nuovo cosmodromo a Vostochny, in Russia. Il centro spaziale di Vostochny è stato costruito per diminuire la dipendenza della Russia dalla base di lancio di Baikonur, in Kazakhistan, che costa al governo russo circa 115 milioni di dollari all’anno di affitto.
Purtroppo uno dei nanosatelliti lanciati durante l’inaugurazione non trasmette alcun segnale. Molto probabilmente dopo l’immissione in orbita non si è acceso. Ecco il video del lancio inaugurale, con le tipiche simulazioni di Roscosmos, l’agenzia spaziale russa.
Mercurio davanti al Sole
Lunedì 9 Maggio il pianeta Mercurio transiterà davanti al Sole. Il fenomeno sarà visibile per tutto il pomeriggio. Per effettuare delle osservazioni basterà un piccolo telescopio o anche un buon binocolo con un cavalletto. È importante utilizzare dei filtri solari professionali, per evitare di bruciarsi la retina. Il prossimo passaggio di Mercurio sul Sole sarà nel novembre del 2019.
Un test per la gravità quantistica
Un gruppo di ricercatori italiani della SISSA di Trieste, del LENS di Firenze e dell’INFN di Padova hanno proposto un modello per conciliare la Relatività e la Meccanica quantistica. Come abbiamo spesso detto le due teorie non si parlano molto e da tempo i fisici cercano di unificarle in una teoria più generale. Il modello proposto di fisici italiani prevede che lo spaziotempo abbia una struttura granulare e discreta, anziché continua e liscia. Il modello, pur preservando il principio di causalità (nessun segnale può viaggiare più velocemente della luce), rinuncia a quello di località, ossia postula l’esistenza di fenomeni non locali. Il modello si aggiunge ai tanti presentati ogni anni da fisici di tutto il mondo, ma ha un aspetto importante: la possibilità, almeno sulla carta, di verificarne sperimentalmente i risultati utilizzando un piccolo chip al silicio. Questo modello è dunque un buon esempio di come viene condotta la ricerca scientifica: si fanno delle ipotesi, anche azzardate, e si cerca un modo di confrontarle con la realtà. Modelli che non possono essere testati sperimentalmente – oggi o in futuro, – non possono essere falsificati e non sono quindi buoni modelli fisici.
Feedback
Se volete contattarmi potete scrivere a spacebreak [at] francescobussola.it o rispondere a questa mail. È uguale.
Se vi fa piacere potete far conoscere la newsletter a un amico inoltrandola o suggerendogli di iscriversi.
La radiazione di Hawking e il quantum spin liquid
Perché Hawking è così famoso? Per la sua vita straordinaria, certo, ma anche per aver derivato uno dei più importanti risultati della fisica moderna: la radiazione di Hawking. C’entrano i buchi neri e la Meccanica quantistica.
Per chi volesse leggere le vecchie newsletter, le trova tutte sul mio sito o su medium. Space break ha anche una pagina facebook e un account twitter, dove pubblico di tanto in tanto curiosità e approfondimenti.
Di cosa parliamo oggi
– chi è Stephen Hawking
– la radiazione di Hawking
– pillole della settimana
Chi è Stephen Hawking
Stephen Hawking è un fisico britannico. Nato nel 1942, da quando ha 21 anni è affetto da SLA, una malattia neurodegenerativa. A Hawking vennero dati due anni di vita. La vita media di una persona affetta da SLA è tra i due e i cinque anni e meno del 5% dei malati sopravvive per più vent’anni. Hawking oggi ha 74 anni ed è sopravvissuto per così a lungo che la sua malattia sembra essersi stabilizzata. Pur non riuscendo a muovere il suo corpo atrofizzato e dovendo comunicare attraverso un sintetizzatore vocale, ha una mente ancora particolarmente brillante. Discute di scienza e religione e continua a fare divulgazione scientifica e ricerca di buona qualità. Il suoi risultati più importanti sono stati raggiunti negli anni ’70. Nel 1971 ha contribuito a dimostrare il cosiddetto “No-hair theorem”, un teorema matematico che riguarda i buchi neri e le loro proprietà fisiche. Nel 1974 ha teorizzato l’esistenza di una radiazione termica proveniente dai buchi neri: la radiazione di Hawking. Ne parliamo oggi.
I buchi neri, in tre righe
I buchi neri sono oggetti celesti con una grande massa che riescono ad attirare ed intrappolare ogni cosa, compresa la radiazione elettromagnetica. Insomma, mangiano tutto. Siccome anche la luce non riesce a uscire, non li vediamo brillare. Sono neri, appunto.
La radiazione di Hawking
Nonostante dal punto di vista classico, ossia secondo la Teoria della Relatività Generale, nulla può uscire da un buco nero, Hawking ha dimostrato che gli effetti quantistici permettono ai buchi neri di emettere una radiazione. In sostanza si tratta di una radiazione termica che si comporta come se fosse emessa da un corpo nero a una certa temperatura.
Cos’è un corpo nero
Un corpo nero in fisica è quello che dice di essere: un corpo completamente nero che assorbe tutta la radiazione elettromagnetica che lo colpisce, senza rifletterla. Riesce però a emettere una radiazione termica, che dipende dalla sua temperatura. Un corpo nero è considerato solitamente un oggetto ideale, perché ci si aspetta che un qualsiasi materiale rifletta un po’ di luce, ma è un utile modello che viene spesso usato quando si studiano i fenomeni elettromagnetici.
Che c’entra con i buchi neri
Ecco, Hawking ha dimostrato che i buchi neri, che non sono un materiale ma degli oggetti celesti, si comportano come un corpo nero: nonostante “mangino tutto”, compresa la radiazione elettromagnetica, riescono a emettere una radiazione termica, come se questa fosse emessa da un corpo nero ad una certa temperatura. In questo caso la temperatura dipende dalla massa del buco nero.
Questa radiazione emessa è chiamata a volte evaporazione, perché fa perdere energia al buco nero e dunque gli fa perdere massa. Perciò se il buco nero non mangiasse nulla per molto tempo, continuerebbe a “evaporare”, rimpicciolendosi fino a scomparire.
Come si arriva a questo risultato
La dimostrazione dell’esistenza di questa radiazione fa uso dei principi della Meccanica quantistica, applicati nell’ambito della Teoria della Relatività. Abbiamo detto più volte che Meccanica quantistica e Relatività non vanno molto d’accordo: dove funziona una teoria, fallisce l’altra e viceversa. Tuttavia negli anni si sono trovati dei modi per utilizzarle insieme. Esiste una teoria che permette di unificare la Meccanica quantistica con la Relatività Speciale. Questa teoria, chiamata Teoria quantistica dei campi (Quantum field theory) è molto complicata, ma ha permesso di ricavare il Modello Standard delle particelle elementari. Insomma, è la Teoria che ha reso possibile l’esperimento del CERN e tutte le scoperte fisiche degli ultimi sessant’anni. La Teoria dei campi funziona però solo con la Relatività Speciale, non con la Relatività Generale, ossia funziona quando si trascurano gli effetti della gravità. Questo significa che non abbiamo ancora una teoria fisica in grado di descrivere tutti i fenomeni quantistici e la gravità. In particolare non siamo in grado di descrivere il comportamento quantistico della gravità stessa. Se si trovasse una teoria di questo tipo, sarebbe quella che i fisici chiamano La teoria del tutto, perché sarebbe in grado di spiegare tutti i fenomeni naturali in modo coerente.
Nonostante non siamo in grado di spiegare a fondo il comportamento quantistico della forza di gravità, è possibile però applicare la Teoria dei campi anche in presenza di gravità. È la cosiddetta Teoria dei campi in spaziotempo curvo. Non è una teoria completa, perché la gravità fa in qualche modo da spettatore ai processi fisici in gioco, ma ci permette di studiare alcuni fenomeni quantistici anche quando c’è la gravità – anche vicino a un buco nero, ad esempio.
Le particelle virtuali e la radiazione di Hawking
Molto spesso per spiegare la radiazione di Hawking viene utilizzato il concetto di particella virtuale. Le particelle virtuali sono in generale particelle che violano alcuni principi fisici, come il principio di conservazione o il principio di causalità. Per questo non sono considerate particelle vere e proprie. Si usano perché saltano fuori nella Teoria dei campi quando si fanno alcuni conti, ma la loro esistenza in natura è una questione più filosofica che scientifica.
Comunque sia, spesso la radiazione di Hawking viene spiegata utilizzando le particelle virtuali. Vicino al buco nero si formano e si distruggono continuamente delle coppie di particelle virtuali con energia nulla. A volte però queste coppie di particelle si dividono: una particella cade nel buco nero e una fugge da esso. Delle due, la seconda, allontanandosi dal buco nero, diventa reale ed in teoria è possibile misurarla: è quella che crea la radiazione di Hawking. La prima invece cade nel buco nero e non la vediamo più. Siccome poi la coppia aveva energia totale nulla e la particella uscente ha energia positiva, per la conservazione dell’energia si dice che le particelle virtuali cadute nel buco nero hanno energia negativa e sono quindi loro che fanno diminuire l’energia – ossia la massa – del buco nero, facendolo rimpicciolire.
Tuttavia questa descrizione, anche se evocativa e in un certo senso intuitiva, è sbagliata: in Teoria dei campi in spaziotempo curvo, ossia quando anche la gravità è in gioco, non è possibile definire chiaramente cosa sia una particella. La definizione di particella è chiara quando la gravità è spenta, ma quando la gravità è accesa perde di significato. Hawking stesso non utilizza le particelle virtuali negli articoli tecnici. Insomma, è possibile ottenere i risultati sulla radiazione di Hawking in maniera rigorosa senza utilizzare il concetto di particella virtuale, che è solo un espediente divulgativo.
La radiazione di Hawking è stata misurata?
No, e per un motivo molto semplice: i buchi neri sono difficili da trovare e sono molto distanti da noi. Non abbiamo ancora la tecnologia per avvicinarci a un buco nero e misurare la radiazione di Hawking. Tuttavia è possibile fare degli esperimenti in laboratorio per simulare il comportamento di un buco nero utilizzando fluidi o fibre ottiche. In questi esperimenti sono stati osservati dei comportamenti compatibili con la radiazione di Hawking.
Pillole della settimana
Alcune notizie di questi giorni, brevi.
Scoperto un nuovo stato della materia
I fisici hanno osservato, in un materiale di Cloruro di rutenio, un nuovo stato della materia che era stato previsto una quarantina di anni fa, chiamato quantum spin liquid. Si tratta di un liquido fatto di elettroni a temperature prossime allo zero assoluto (-273 °C). Solitamente a temperature così basse gli elettroni tendono ad allinearsi in maniera particolare. In questo caso invece non lo fanno. Questo nuovo stato della materia potrebbe servire in futuro per sviluppare i computer quantistici, ma è troppo presto per dirlo con certezza. Trovate tutto qui.
Nuovo test per New Shepard, il lanciatore di Blue Origin
Terzo test per Blue Origin, la compagnia di Jeff Bezof che sta sviluppando dei lanciatori per il turismo spaziale. New Shepard è salito fino a 103 Km di quota, per poi riatterrare verticalmente a terra. Guardate il video perché è fantascienza: New Shepard ha riattivato i motori a 1 Km da terra, decelerando paurosamente.
Le scoperte di NEOWISE
La missione NEOWISE (Near-Earth Object Wide-field Survey Explorer) della NASA per la ricerca di asteroidi vicini alla terra ha rilasciato nuovi dati. Dalla sua riattivazione NEOWISE ha scoperto 250 nuovi oggetti, di cui 72 vicini alla terra, e 4 nuove comete. I dettagli e un video di spiegazione sono qui.
Feedback
Aspetto le vostre opinioni e domande a spacebreak [at] francescobussola.it
Se vi fa piacere potete far conoscere la newsletter a un amico inoltrandola o suggerendogli di iscriversi.
Per approfondire
– la radiazione di Hawking, spiegata in termini di particelle virtuali
– perché non abbiamo una foto di un buco nero (video in inglese)
– il paradosso dell’informazione dei buchi neri