La radiazione di Hawking e il quantum spin liquid
Perché Hawking è così famoso? Per la sua vita straordinaria, certo, ma anche per aver derivato uno dei più importanti risultati della fisica moderna: la radiazione di Hawking. C’entrano i buchi neri e la Meccanica quantistica.
Per chi volesse leggere le vecchie newsletter, le trova tutte sul mio sito o su medium. Space break ha anche una pagina facebook e un account twitter, dove pubblico di tanto in tanto curiosità e approfondimenti.
Di cosa parliamo oggi
– chi è Stephen Hawking
– la radiazione di Hawking
– pillole della settimana
Chi è Stephen Hawking
Stephen Hawking è un fisico britannico. Nato nel 1942, da quando ha 21 anni è affetto da SLA, una malattia neurodegenerativa. A Hawking vennero dati due anni di vita. La vita media di una persona affetta da SLA è tra i due e i cinque anni e meno del 5% dei malati sopravvive per più vent’anni. Hawking oggi ha 74 anni ed è sopravvissuto per così a lungo che la sua malattia sembra essersi stabilizzata. Pur non riuscendo a muovere il suo corpo atrofizzato e dovendo comunicare attraverso un sintetizzatore vocale, ha una mente ancora particolarmente brillante. Discute di scienza e religione e continua a fare divulgazione scientifica e ricerca di buona qualità. Il suoi risultati più importanti sono stati raggiunti negli anni ’70. Nel 1971 ha contribuito a dimostrare il cosiddetto “No-hair theorem”, un teorema matematico che riguarda i buchi neri e le loro proprietà fisiche. Nel 1974 ha teorizzato l’esistenza di una radiazione termica proveniente dai buchi neri: la radiazione di Hawking. Ne parliamo oggi.
I buchi neri, in tre righe
I buchi neri sono oggetti celesti con una grande massa che riescono ad attirare ed intrappolare ogni cosa, compresa la radiazione elettromagnetica. Insomma, mangiano tutto. Siccome anche la luce non riesce a uscire, non li vediamo brillare. Sono neri, appunto.
La radiazione di Hawking
Nonostante dal punto di vista classico, ossia secondo la Teoria della Relatività Generale, nulla può uscire da un buco nero, Hawking ha dimostrato che gli effetti quantistici permettono ai buchi neri di emettere una radiazione. In sostanza si tratta di una radiazione termica che si comporta come se fosse emessa da un corpo nero a una certa temperatura.
Cos’è un corpo nero
Un corpo nero in fisica è quello che dice di essere: un corpo completamente nero che assorbe tutta la radiazione elettromagnetica che lo colpisce, senza rifletterla. Riesce però a emettere una radiazione termica, che dipende dalla sua temperatura. Un corpo nero è considerato solitamente un oggetto ideale, perché ci si aspetta che un qualsiasi materiale rifletta un po’ di luce, ma è un utile modello che viene spesso usato quando si studiano i fenomeni elettromagnetici.
Che c’entra con i buchi neri
Ecco, Hawking ha dimostrato che i buchi neri, che non sono un materiale ma degli oggetti celesti, si comportano come un corpo nero: nonostante “mangino tutto”, compresa la radiazione elettromagnetica, riescono a emettere una radiazione termica, come se questa fosse emessa da un corpo nero ad una certa temperatura. In questo caso la temperatura dipende dalla massa del buco nero.
Questa radiazione emessa è chiamata a volte evaporazione, perché fa perdere energia al buco nero e dunque gli fa perdere massa. Perciò se il buco nero non mangiasse nulla per molto tempo, continuerebbe a “evaporare”, rimpicciolendosi fino a scomparire.
Come si arriva a questo risultato
La dimostrazione dell’esistenza di questa radiazione fa uso dei principi della Meccanica quantistica, applicati nell’ambito della Teoria della Relatività. Abbiamo detto più volte che Meccanica quantistica e Relatività non vanno molto d’accordo: dove funziona una teoria, fallisce l’altra e viceversa. Tuttavia negli anni si sono trovati dei modi per utilizzarle insieme. Esiste una teoria che permette di unificare la Meccanica quantistica con la Relatività Speciale. Questa teoria, chiamata Teoria quantistica dei campi (Quantum field theory) è molto complicata, ma ha permesso di ricavare il Modello Standard delle particelle elementari. Insomma, è la Teoria che ha reso possibile l’esperimento del CERN e tutte le scoperte fisiche degli ultimi sessant’anni. La Teoria dei campi funziona però solo con la Relatività Speciale, non con la Relatività Generale, ossia funziona quando si trascurano gli effetti della gravità. Questo significa che non abbiamo ancora una teoria fisica in grado di descrivere tutti i fenomeni quantistici e la gravità. In particolare non siamo in grado di descrivere il comportamento quantistico della gravità stessa. Se si trovasse una teoria di questo tipo, sarebbe quella che i fisici chiamano La teoria del tutto, perché sarebbe in grado di spiegare tutti i fenomeni naturali in modo coerente.
Nonostante non siamo in grado di spiegare a fondo il comportamento quantistico della forza di gravità, è possibile però applicare la Teoria dei campi anche in presenza di gravità. È la cosiddetta Teoria dei campi in spaziotempo curvo. Non è una teoria completa, perché la gravità fa in qualche modo da spettatore ai processi fisici in gioco, ma ci permette di studiare alcuni fenomeni quantistici anche quando c’è la gravità – anche vicino a un buco nero, ad esempio.
Le particelle virtuali e la radiazione di Hawking
Molto spesso per spiegare la radiazione di Hawking viene utilizzato il concetto di particella virtuale. Le particelle virtuali sono in generale particelle che violano alcuni principi fisici, come il principio di conservazione o il principio di causalità. Per questo non sono considerate particelle vere e proprie. Si usano perché saltano fuori nella Teoria dei campi quando si fanno alcuni conti, ma la loro esistenza in natura è una questione più filosofica che scientifica.
Comunque sia, spesso la radiazione di Hawking viene spiegata utilizzando le particelle virtuali. Vicino al buco nero si formano e si distruggono continuamente delle coppie di particelle virtuali con energia nulla. A volte però queste coppie di particelle si dividono: una particella cade nel buco nero e una fugge da esso. Delle due, la seconda, allontanandosi dal buco nero, diventa reale ed in teoria è possibile misurarla: è quella che crea la radiazione di Hawking. La prima invece cade nel buco nero e non la vediamo più. Siccome poi la coppia aveva energia totale nulla e la particella uscente ha energia positiva, per la conservazione dell’energia si dice che le particelle virtuali cadute nel buco nero hanno energia negativa e sono quindi loro che fanno diminuire l’energia – ossia la massa – del buco nero, facendolo rimpicciolire.
Tuttavia questa descrizione, anche se evocativa e in un certo senso intuitiva, è sbagliata: in Teoria dei campi in spaziotempo curvo, ossia quando anche la gravità è in gioco, non è possibile definire chiaramente cosa sia una particella. La definizione di particella è chiara quando la gravità è spenta, ma quando la gravità è accesa perde di significato. Hawking stesso non utilizza le particelle virtuali negli articoli tecnici. Insomma, è possibile ottenere i risultati sulla radiazione di Hawking in maniera rigorosa senza utilizzare il concetto di particella virtuale, che è solo un espediente divulgativo.
La radiazione di Hawking è stata misurata?
No, e per un motivo molto semplice: i buchi neri sono difficili da trovare e sono molto distanti da noi. Non abbiamo ancora la tecnologia per avvicinarci a un buco nero e misurare la radiazione di Hawking. Tuttavia è possibile fare degli esperimenti in laboratorio per simulare il comportamento di un buco nero utilizzando fluidi o fibre ottiche. In questi esperimenti sono stati osservati dei comportamenti compatibili con la radiazione di Hawking.
Pillole della settimana
Alcune notizie di questi giorni, brevi.
Scoperto un nuovo stato della materia
I fisici hanno osservato, in un materiale di Cloruro di rutenio, un nuovo stato della materia che era stato previsto una quarantina di anni fa, chiamato quantum spin liquid. Si tratta di un liquido fatto di elettroni a temperature prossime allo zero assoluto (-273 °C). Solitamente a temperature così basse gli elettroni tendono ad allinearsi in maniera particolare. In questo caso invece non lo fanno. Questo nuovo stato della materia potrebbe servire in futuro per sviluppare i computer quantistici, ma è troppo presto per dirlo con certezza. Trovate tutto qui.
Nuovo test per New Shepard, il lanciatore di Blue Origin
Terzo test per Blue Origin, la compagnia di Jeff Bezof che sta sviluppando dei lanciatori per il turismo spaziale. New Shepard è salito fino a 103 Km di quota, per poi riatterrare verticalmente a terra. Guardate il video perché è fantascienza: New Shepard ha riattivato i motori a 1 Km da terra, decelerando paurosamente.
Le scoperte di NEOWISE
La missione NEOWISE (Near-Earth Object Wide-field Survey Explorer) della NASA per la ricerca di asteroidi vicini alla terra ha rilasciato nuovi dati. Dalla sua riattivazione NEOWISE ha scoperto 250 nuovi oggetti, di cui 72 vicini alla terra, e 4 nuove comete. I dettagli e un video di spiegazione sono qui.
Feedback
Aspetto le vostre opinioni e domande a spacebreak [at] francescobussola.it
Se vi fa piacere potete far conoscere la newsletter a un amico inoltrandola o suggerendogli di iscriversi.
Per approfondire
– la radiazione di Hawking, spiegata in termini di particelle virtuali
– perché non abbiamo una foto di un buco nero (video in inglese)
– il paradosso dell’informazione dei buchi neri
I buchi neri, LIGO e le onde gravitazionali
La settimana scorsa abbiamo parlato della Relatività e siamo pronti a capire cosa sono i buchi neri. Qui trovate le scorse newsletter, qui la pagina facebook e qui l’account twitter di Space break.
Oggi però è anche un giorno importante per la fisica. Forse sono state rilevate per la prima volta le onde gravitazionali e c’è un’attesa conferenza stampa oggi pomeriggio.
Se vi piace questa newsletter potete farla conoscere a un amico inoltrando la mail o suggerendogli di iscriversi.
Di cosa parliamo oggi
– cosa sono i buchi neri
– vedere i buchi neri (ma esistono davvero?)
– forse LIGO ha rilevato le onde gravitazionali
Cosa sono i buchi neri
Come abbiamo detto l’altra volta, secondo la Relatività l’universo “poggia” – per così dire – su una struttura intangibile chiamata spaziotempo che possiamo immaginare come un lenzuolo steso. La presenza di un corpo, come ad esempio un pianeta, una stella, una galassia o un comodino deforma il lenzuolo creando delle conche. Quando gli oggetti finiscono vicino a queste conche, ci cadono dentro come in questa animazione (si ingrandisce cliccando).
La gravità quindi non è considerata una forza vera e propria, ma l’effetto di una deformazione geometrica dell’universo. È una descrizione strana, ma incredibilmente efficace e in accordo con gli esperimenti.
Abbiamo anche detto che pure i raggi di luce, che si spostano seguendo la griglia dello spaziotempo, cadono in queste conche e il loro percorso viene deviato dalla curvatura.
Più un corpo ha massa, più la sua conca è profonda, più facilmente devia le traiettorie degli altri corpi e della luce. Quindi la conca fatta dal Sole è più profonda di quella fatta dalla Terra, che è più profonda di quella fatta da una mongolfiera, che è più profonda di quella fatta da una pulce.
Per chi si è perso e per chi non c’era, rimando alla scorsa newsletter.
La velocità di fuga e il raggio di Schwarzschild
Per non cadere in una conca, un oggetto deve superare la cosiddetta velocità di fuga. La velocità di fuga è insomma la velocità necessaria per sfuggire alla gravità di un pianeta o di una stella, senza caderci addosso. Ad esempio sulla superficie della Terra la velocità di fuga è pari a 40’320 Km orari. Più ci si allontana dalla Terra però, meno si sente la gravità e la velocità di fuga diminuisce: a 9 mila chilometri dalla superficie, la velocità di fuga è 25’560 km orari. Quando mandiamo un oggetto nello spazio utilizziamo dei razzi che accelerano fino alla velocità di fuga e che possono poi viaggiare senza propulsione.
Anche la luce, per riuscire a sfuggire a una conca gravitazionale, deve superare la velocità di fuga. Tuttavia di solito non è un problema: la velocità della luce nel vuoto è enorme: circa 300’000 Km al secondo. E infatti riusciamo a mandare segnali luminosi nello spazio senza preoccupazioni.
Esiste però una distanza dai pianeti o dalle stelle, chiamata raggio di Schwarzschild, entro la quale anche la luce rimane intrappolata (la parola “raggio” va intesa in senso geometrico, come il raggio di un cerchio o di una bicicletta). Quale sarebbe questa distanza nel caso della Terra? Per la Terra – la cui massa è quasi 6 milioni di miliardi di miliardi di Kg – il raggio di Schwarzschild è poco più di 8 millimetri, per la precisione 8,869 millimetri. Cosa significa? Significa che se tutta la massa della Terra fosse compressa in una pallina con un raggio, supponiamo, di 8 millimetri, una volta arrivata a una distanza inferiore o uguale a 0,869 millimetri dalla superficie della Terra, anche la luce non potrebbe più sfuggire. E poiché nessun corpo può andare più veloce della luce, nulla può uscire dal raggio di Schwarzschild.
Fortunatamente non è così: la Terra non è condensata in una pallina piccolissima e il raggio di Schwarzschild, nel nostro caso, non c’è. Questo ci permette di mandare segnali elettromagnetici nello spazio senza problemi.
Cosa accade però quando una grande quantità di massa, per qualche motivo, si compatta in una pallina piccolissima?
I buchi neri non sono buchi
Quando una grande massa si compatta in un volume piccolo lo spaziotempo si deforma molto, ossia la conca si fa sempre più profonda, come in questa immagine.
Perciò, a parità di distanza dalla pallina, la curvatura dello spaziotempo, ossia la gravità, diventa sempre più forte e la velocità di fuga necessaria per sfuggire dalla buca è sempre più alta.
Se la pallina in cui è compattata la materia è estremamente piccola allora ha senso parlare del raggio di Schwarzschild – la distanza entro la quale nemmeno la luce può sfuggire. Alla distanza prevista dal raggio di Schwarzschild si crea una superficie sferica chiamata orizzonte degli eventi, qui rappresentata da quel semicerchio nero.
Tutti gli eventi che accadono dentro l’orizzonte degli eventi, ossia entro il raggio di Schwarzschild, non possono essere osservati da fuori. Questo accade perché nemmeno la luce può uscire: da quel punto in poi un osservatore esterno vede solo una sfera nera e nulla più. Questo è il buco nero.
Come avete capito, però, non è propriamente un buco, ma una parte di universo da cui nulla può uscire e che non possiamo osservare.
Come vedere i buchi neri, se esistono
I buchi neri quindi non si possono vedere per un motivo molto semplice: sono neri. Quando osserviamo il cielo riusciamo a vedere tutti gli oggetti che emettono onde elettromagnetiche: luce visibile, ad esempio, ma anche raggi infrarossi, ultravioletti, segnali radio e così via. Tutti questi segnali viaggiano alla velocità della luce, raggiungono la Terra e possono essere captati dall’occhio umano o da delle antenne. I buchi neri, però, “mangiano” tutto, anche questi segnali, e non ne emettono. Come facciamo allora a sapere che esistono? E come possiamo vederli? (Bonus: in realtà crediamo che i buchi neri possano emettere qualcosa – la radiazione di Hawking – ma ne parleremo un’altra volta)
Cercare cosa manca
Dato che non possiamo vederli direttamente, un metodo per cercare i buchi neri è puntare un telescopio dove si crede che ci possa essere un buco nero e vedere se manca qualcosa. Secondo le teorie moderne, al centro di ogni galassia si trova un buco nero supermassiccio. Negli anni novanta è stato quindi puntato un telescopio al centro della nostra Galassia, la Via Lattea. Dopo anni di osservazione, ecco cosa è stato visto (si ingrandisce cliccando).
La stella segnata dal tracciato giallo si chiama S2 e sta girando intorno a qualcosa che non si vede. Per dare un’idea di quanto veloce stia andando, il righello in alto a destra (10 giorni luce) equivale a 259 miliardi di chilometri. Cosa c’è lì al centro? Dai calcoli dell’orbita si è stimato che l’oggetto misterioso attorno al quale S2 sta girando ha una massa pari a 3,7 milioni di Soli. Secondo le teorie moderne un oggetto così grande che non emette radiazione può essere solo un buco nero.
Gli astronomi hanno trovato evidenze simili anche al centro di altre galassie, sempre studiando il moto del materiale che orbita attorno al loro centro.
Cercare cosa scompare
Certo i buchi neri non si trovano solo al centro delle galassie: nulla vieta che ce ne siano altri da altre parti. Per trovarne bisogna essere molto fortunati – osservando per caso fenomeni spiegabili soltanto dalla presenza di un buco nero – oppure usare un po’ di astuzia e osservare le supergiganti rosse.
Una supergigante rossa è una stella che ha quasi completato il suo processo di fusione ed è “in fine vita”. Una volta terminati i processi di fusione può esplodere e diventare una supernova oppure può formare un buco nero. Gli astronomi da tempo osservano con attenzione decine di supergiganti rosse. L’idea è semplice: se improvvisamente scompaiono, potrebbe essersi formato un buco nero.
È quello che è accaduto a un paio di stelle l’anno scorso. Un attimo prima c’erano, un attimo dopo non c’erano più. Non è detto che siano diventate dei buchi neri, però. Le stelle potrebbero avere una luminosità molto variabile o potrebbero essere finite dietro un ammasso di polveri e detriti. Non possiamo fare altro che continuare ad osservarle e pazientare.
LIGO ha rilevato le onde gravitazionali, si dice
LIGO è un importante esperimento pensato per rilevare le onde gravitazionali. È formato da due rilevatori – uno in Lousiana e uno nello stato di Washington – che funzionano come delle antenne.
Nella prossima newsletter parleremo delle onde gravitazionali. Per ora ci accontentiamo di sapere che sono delle increspature nello spaziotempo predette da Einstein ormai cento anni fa, che quasi tutta la comunità scientifica crede nella loro esistenza e che sono molto sfuggenti. Chi vuole saperne un po’ di più può guardare questo video su youtube, attivando i sottotitoli in italiano.
Da tempo si mormora che LIGO abbia captato qualcosa di interessante, ma le voci si sono fatte più forti da quando lo staff di LIGO (composto da circa mille collaboratori sparsi in tutto il mondo) ha invitato tutta la comunità scientifica a una conferenza stampa per “fornire aggiornamenti sulla ricerca delle onde gravitazionali”.
Se LIGO avesse trovato le onde gravitazionali sarebbe una notizia epocale anche se, ricordo, i dati dovranno passare il vaglio della comunità scientifica per una conferma definitiva. Ciò che renderebbe comunque molto promettente la possibile scoperta è che i dati di LIGO sono analizzati da molti gruppi di ricerca che partecipano alla collaborazione scientifica. L’appuntamento per la conferenza stampa è oggi 11 Febbraio alle 16:30. Uno streaming sarà disponibile su youtube. Seguite la pagina facebook per aggiornamenti. Se riesco faccio un livetweet su twitter.
Per approfondire
– La prima evidenza scientifica della relatività generale
– Cosa sono i micro buchi neri
– E interstellar? Un bel video di Rai Scuola
La Relatività Generale e le missioni su Marte, un giorno
Come promesso oggi parliamo della Relatività Generale, la parte della Teoria di Einstein che considera anche la gravità. La scorsa mail è stata corposa, oggi ci andiamo piano.
Se avete curiosità potete scrivermi a spacebreak [at] francescobussola.it
Di cosa parliamo
– la Teoria della Relatività Generale
– pillole della settimana
La Teoria della Relatività Generale
Come abbiamo visto la volta scorsa la Relatività Speciale è basata su poche buone idee:
1 – Le leggi fisiche sono le stesse per osservatori con velocità diverse;
2 – La velocità della luce nel vuoto è una costante, ed è uguale per ogni osservatore;
3 – Lo spazio e il tempo non sono più concetti distinti, ma sono fusi in un unico concetto chiamato spaziotempo;
4 – Non valgono più le leggi inventate da Galileo. Al loro posto ci sono delle nuove leggi, chiamate trasformazioni di Lorentz che “mescolano” lo spazio e il tempo.
Le conseguenze di queste idee sono interessanti e inaspettate:
– La misura delle distanze è relativa, ossia cambia in base alla velocità dell’osservatore;
– Anche la misura degli intervalli di tempo è relativa.
Questi due fenomeni, chiamati contrazione delle lunghezze e dilatazione del tempo, accadono veramente e sono stati ampiamente verificati dagli esperimenti.
Inoltre ci sono altre conseguenze, come ad esempio la famosa legge E=mc2 o il fatto che nessun corpo può raggiungere e superare la velocità della luce.
Per chi si è perso e per chi non c’era, qui c’è la newsletter della settimana scorsa.
Manca la gravità
Nella Relatività Speciale manca però un ingrediente, la gravità. Tutta la Teoria è infatti valida quando gli effetti della gravità sono trascurabili o non presenti: è quindi un modello, una semplificazione utile in alcuni casi, ma che non dice nulla a proposito della forza di gravità, che solitamente è descritta da Newton. Ma sappiamo anche che Newton non funziona. Che si fa? Non potremmo accontentarci di avere un modello che in qualche modo funziona, magari correggendo un po’ la teoria di Newton giusto per far tornare i conti? Perché bisogna per forza includere la gravità nella Relatività? Essenzialmente per completezza. Ai fisici piace cercare delle leggi semplici che descrivano la più vasta gamma di fenomeni naturali. Una teoria sul movimento dei corpi, come è la Relatività, che non descrive la gravità – il fenomeno fisico che conosciamo da più tempo – è in un certo senso “zoppa”.
Comunque sia, in una delle prossime mail vi parlerò del paradosso dei gemelli e sarà evidente che in effetti nella Relatività Speciale si nota che manca qualcosa.
Come introdurre la gravità
Abbiamo detto tempo fa che la forza di gravità, per Newton, dipendeva dalla distanza tra i corpi in gioco. Siccome però per Einstein la misura della distanza è un concetto relativo, quella legge non va più bene. Come si può introdurre perciò la gravità nella Relatività?
Per farlo dobbiamo ricordarci di come Einstein descrive lo spazio e il tempo: non sono entità separate, ma sono unite in un unico concetto chiamato spaziotempo. Lo spaziotempo è in sostanza una specie di struttura su cui poggiamo e senza di essa non ci sarebbe l’universo.
La faccio semplice. Provate a immaginare un universo completamente vuoto, senza galassie, stelle, pianeti, polveri. Ecco, quello sarebbe lo spaziotempo descritto dalla Relatività Speciale. Dal punto di vista geometrico possiamo pensarlo come un lenzuolo steso orizzontalmente. Ogni punto del lenzuolo indica un evento, ossia un punto dello spazio ad un certo istante di tempo. In ogni punto però non accade niente e, come detto, non c’è niente. Questo è il motivo per cui non c’è gravità.
Cosa accade però quando appoggiamo una palla sul lenzuolo? Il lenzuolo ovviamente fa una conca dove viene messa la palla, no? Ecco, questo è l’effetto della presenza di un pianeta (o di una stella, o di un qualsiasi corpo) sullo spaziotempo: la struttura su cui “poggia” il corpo si deforma. Lo spaziotempo quindi non è più piatto, come poco prima, ma è curvo. Ovviamente ogni pallina che appoggiate sul lenzuolo – sia essa una stella, un pianeta, un asteroide, un uomo, un gatto o un temperamatite – curverà lo spaziotempo. Più l’oggetto è grande (o meglio, più la sua massa è grande), più la conca sarà profonda. Se poi l’oggetto si muove, la conca si sposterà insieme ad esso.
Per capire cosa c’entra questo con la gravità basta immaginare cosa accade a una pallina quando finisce nella conca di un’altra pallina, come nella seguente animazione.
Come vedete quando una pallina finisce nella conca di una pallina molto più pesante, ci cade dentro. Vedete il movimento che fa? Sembra quello di un asteroide che cade su un pianeta. La curvatura dello spaziotempo dunque è il modo con cui viene descritta la gravità nella Teoria della Relatività.
Perché non la vediamo?
Non vediamo la curvatura per il fatto che lo spaziotempo non è una struttura tangibile. Il nostro punto di vista è molto simile a quello della telecamera in verticale nell’animazione: a noi lo spaziotempo appare “piatto”. Ci accorgiamo però degli effetti causati della curvatura.
Quali sono gli effetti della curvatura?
Beh, innanzitutto vediamo i corpi che si attirano: i pianeti orbitano attorno al Sole, gli oggetti cadono verso la Terra e così via. Insomma, percepiamo la gravità. Ma ci sono altri effetti. Se lo spaziotempo si piega, pensateci, significa che lo spazio e il tempo vengono deformati e le loro misure cambiano. Non stiamo parlando della dilatazione del tempo e della contrazione delle lunghezze viste l’altra volta. Parliamo di ulteriori effetti aggiuntivi dovuti alla gravità ed esistono delle formule per descriverli. L’esperimento di Hafele e Keating di cui abbiamo parlato dimostrò anche questi effetti aggiuntivi.
Se siete scettici fate bene – lo scetticismo in mancanza di prove è una buona abitudine – e soprattutto siete in buona compagnia. Negli anni ’70 il Dipartimento di Difesa statunitense cominciò a costruire il sistema GPS, il famoso sistema di localizzazione basato sui satelliti. Per funzionare correttamente i satelliti dovevano essere sincronizzati, altrimenti avrebbero segnalato in maniera sfasata le posizioni. All’epoca i fisici spiegarono ai militari che per sincronizzare i satelliti bisognava tenere conto delle correzioni agli orologi previste sia dalla Relatività Speciale che da quella Generale. I militari non ci credevano. Indovinate chi aveva ragione.
C’è altro?
Sì, una cosa importantissima e difficile da credere. Abbiamo visto che le palline quando cadono in una buca ci finiscono dentro girando intorno al centro. E che questo è come la Relatività descrive la gravità. Ma c’è una cosa in più: anche ai raggi di luce accade a stessa cosa: I raggi di luce infatti si propagano seguendo la griglia dello spaziotempo. Quando questa si deforma, però, si modifica anche il loro percorso. Perciò quando un raggio di luce passa vicino a un pianeta, a una stella o a una galassia, modifica la sua traiettoria, più o meno come in questa immagine.
Questo fenomeno si chiama lente gravitazionale. Vi spiego l’immagine. La stella, quella in alto a destra, si trova nascosta dietro il Sole e sarebbe impossibile vederla dalla Terra. La sua luce però finisce nella conca gravitazionale del Sole, perciò il raggio luminoso curva la propria traiettoria e raggiunge comunque la Terra (linea gialla). Noi quindi riusciamo a vedere la stella, ma la vediamo come se fosse più a sinistra (linea rossa). Insomma, grazie a questo effetto possiamo vedere dei corpi celesti nascosti dietro qualche ostacolo.
Volete una prova? Questa foto è la famosa croce di Einstein, un corpo celeste nella costellazione di Pegaso. Quella al centro è una Galassia e le luci accanto sono quattro immagini apparenti di un unico Quasar che si trova dietro la Galassia. La luce emessa dal quasar passa in fianco alla Galassia, curva la sua traiettoria e ci raggiunge comunque. Einstein postulò l’esistenza di tali oggetti nel 1915, sessantacinque anni prima della loro scoperta.
Pillole
Alcune notizie di questi giorni, brevi.
I funghi sulla ISS
Sulla Stazione Spaziale Internazionale sono stati coltivate per 18 mesi delle cellule di alcuni funghi particolari che solitamente crescono in Antartide e che sono considerati buoni candidati per “colonizzare” l’ambiente marziano. Li vedete nell’immagine sotto, dove c’è la freccia. Più del 60% delle cellule dei funghi sono sopravvissute, mantenendo stabile il proprio DNA dando prova che la vita può sopravvivere anche in situazioni estreme. Qui gli approfondimenti.
La navicella Orion
L’Orion MPCV è un veicolo spaziale con equipaggio attualmente in fase di sviluppo da parte della NASA che sarà impiegato nell’esplorazione umana degli asteroidi in vista di un futuro sbarco su Marte. Nonostante i tagli ai finanziamenti il progetto continua. In questi giorni Orion è stato trasportato al Kennedy Space Center a Cape Canaveral con il fighissimo aereo Super Guppy per l’assemblaggio finale. Il prossimo lancio test senza equipaggio è previsto nel 2018.
Il Lussemburgo spara (molto) alto
Il governo del Lussemburgo ha annunciato un ambizioso progetto per diventare “il centro europeo nell’esplorazione e nell’utilizzo delle risorse spaziali”. L’obiettivo è quello di sviluppare le tecnologie e stabilire un quadro normativo per poter estrarre minerali dagli asteroidi. Chissà.
Una passeggiata spaziale
Ieri gli astronauti Russi Malenchenko e Volkov hanno fatto una passeggiata spaziale per attività di manutenzione della ISS. Durante la passeggiata hanno recuperato l’esperimento europeo Expose-R2, un laboratorio di campioni biologici simile a quello utilizzato per i funghi di cui abbiamo parlato. Ecco Volkov al lavoro.
Feedback
Ti è piaciuta questa mail? Falla conoscere a un amico.
Per approfondire
– Il fenomeno della lente gravitazionale rivisto a Dicembre dello scorso anno
– La storia delle lenti gravitazionali (inglese)
– La Relatività Generale, in inglese, coi disegnini (video)
– Gli ultimi appunti di Einstein, scritti poco prima di morire
– Cosa sono le onde gravitazionali (fumetto e video in inglese)