Scoperta una quinta forza?
Ciao! Scusate per l’assenza di questi giorni ma a causa di un infortunio ho dovuto sospendere improvvisamente le newsletter. Cerco di riprendere oggi, ma è possibile che faccia qualche altra pausa perché non riesco a scrivere troppo alla tastiera. Portate pazienza per un po’. Chiedo anche scusa a chi mi ha scritto e sta aspettando da tempo una mia risposta: pian piano recupero.
Oggi faccio un riassuntone delle notizie di questi giorni e dalla prossima newsletter ricomincio con le lezioni.
Sondaggi
A proposito delle lezioni, avevo lanciato un sondaggio su Twitter per decidere l’argomento della prossima newsletter, ma poi non vi ho scritto, quindi la maggior parte di voi non lo ha visto. Lo ripropongo oggi (eccolo qui). Dentro ci trovate anche il primo video musicale registrato nello spazio. C’è tempo fino a giovedì per votare.
Qui invece trovate un sondaggione su Space Break. Mi piacerebbe sapere che ne pensate della newsletter. Ci sono cinque domande e dura un minuto. Giuro.
Di cosa parliamo oggi
– Lisa Pathfinder funziona
– L’espansione di Bigelow
– Scoperta una quinta forza naturale?
– Plutone, come non l’avete mai visto
– Come si tara un esperimento come LIGO
– Nuovo lancio di SpaceX
– Gli tsunami su Marte
Lisa Pathfinder
Lisa Pathfinder è una sonda test dell’Agenzia Spaziale Europea, necessaria per collaudare le tecnologie necessarie a costruire un rilevatore di onde gravitazionali nello spazio. All’interno della sonda ci sono due masse di prova (due cubi di metallo di 2 kg), distanti 38 centimetri e in caduta libera, il che significa che fluttuano all’interno di Lisa restando quasi immobili l’una rispetto all’altra. Con una conferenza stampa è stato annunciato che la missione ha raggiunto il suo obiettivo: le masse accelerano pochissimo – la loro accelerazione relativa è più piccola di dieci milionesimi di un miliardesimo della gravità della terra – e le forze che le disturbano sono state identificate con una precisione superiore alle aspettative. La missione ha quindi dimostrato la fattibilità tecnologica della rivelazione delle onde gravitazionali nello spazio (il progetto per rivelarle si chiama eLISA), restituendo un risultato di sensibilità persino superiore alle aspettative.
L’espansione di Bigelow
Avevamo parlato di BEAM (Bigelow expandable activity module), il modulo gonfiabile che era stato installato con successo sulla ISS (qui il video). I moduli gonfiabili potrebbero in futuro sostituire i moduli rigidi in cui vivono gli astronauti nello spazio, perché sono leggeri e poco voluminosi, ma sono anche più delicati. Dopo aver effettuato le operazioni di gonfiaggio, gli astronauti Jeff Williams e Oleg Skripochka hanno aperto per la prima volta il portello del modulo e ne hanno verificato la tenuta stagna. Giusto per dare un’idea delle competenze degli astronauti, eccoli mentre rimpiazzano una giunzione mancante del sistema di aerazione di BEAM come farebbe MacGyver.
Il modulo verrà monitorato anche nelle prossime settimane, anche grazie all’utilizzo di vari sensori.
Scoperta una quinta forza? Andiamoci cauti
Si fa un gran parlare della possibile scoperta fatta da un gruppo di ricercatori dell’istituto di fisica nucleare ungherese. Mentre effettuavano degli esperimenti per studiare la materia oscura, avrebbero trovato evidenze di una quinta forza fondamentale, che andrebbe ad aggiungersi alle quattro per ora conosciute. I risultati di questi esperimenti sono ormai vecchi di qualche mese, ma recentemente sono stati rielaborati da un gruppo di ricerca statunitense e apparentemente non sono in conflitto con nessun esperimento precedente. Vale la pena essere cauti. I dati potrebbero essere esatti, ma non la loro interpretazione. Servirà condurre altri esperimenti per capire se è stata scoperta una nuova forza fondamentale oppure no.
Plutone, come non l’avete mai visto
La sonda New Horizon ha fatto un sorvolo ravvicinato di Plutone, scattando una serie di foto con una risoluzione di 80 metri per pixel, ora raccolte in un’unica strip. Il collage di foto attraversa vari tipi di terreno: aree colpite da crateri, terreni ondulati, montagne, pianure, zone ricoperte di azoto ghiacciato in sublimazione e altopiani. L’immagine ad alta risoluzione è qui. Questo invece è il video.
Come si tara LIGO
L’esperimento LIGO, che ha rivelato qualche mese fa le onde gravitazionali, sfrutta dei principi piuttosto semplici di interferometria, ma utilizza tecnologie estremamente avanzate per ridurre i disturbi – il cosiddetto rumore (come funziona LIGO?). Come ogni strumento di laboratorio, anche LIGO deve essere tarato, cioè deve essere determinato il modo in cui lo strumento converte in un output il segnale che riceve. Ma come si tara uno strumento complesso come LIGO? Chi sa l’inglese ed è curioso trova la risposta qui.
A proposito di LIGO, sono state fatte delle analisi approfondite per determinare se le onde gravitazionali che abbiamo rivelato si comportano come previsto da Einstein. La risposta è sì. I dettagli qui.
Per finire, ecco un bel video dal TEDxVerona sulle onde gravitazionali. Quello che parla, con un po’ di emozione iniziale, è il prof. Giovanni Andrea Prodi, coordinatore dell’unità di ricerca Padova-Trento di Virgo, l’esperimento italiano che collabora con LIGO.
SpaceX rilancia
Il quarto lancio con rientro del razzo Falcon9 di SpaceX è andato a buon fine. Nuovo lancio il 15 Giugno, dalla base di Cape Canaveral, quando in Italia saranno le 4 del pomeriggio, per la messa in orbita di alcuni satelliti di telecomunicazione.
Gli tsunami su Marte
Delle ricerche finanziate dalla NASA indicano che il terreno costiero di Marte si è formato anche grazie a dei giganteschi tsunami, risalenti al periodo in cui su Marte era presente un oceano di acqua liquida. Le foto delle zone costiere interessate dagli tsunami sono nel tweet qui sotto (l’articolo in inglese si apre cliccando).
New research indicates that giant tsunamis played role in forming Martian coastal terrain: https://t.co/Vxn8frXChf pic.twitter.com/2f2pCeqUHo
— NASA (@NASA) 30 maggio 2016
LHC down (per colpa di una faina)
Ciao! Oggi niente lezione di fisica, perché sono un po’ preso da alcuni lavori. Ne approfittiamo per riposarci un attimo. I nuovi arrivati che vogliono leggere qualcosa sulla fisica moderna trovano le vecchie newsletter sul mio blog. Da gennaio abbiamo parlato di un bel po’ di argomenti: la Teoria della Relatività Speciale e Generale, la Meccanica quantistica, il dualismo onda-particella, le quattro forze fondamentali, il gatto di Schrödinger, la radiazione di Hawking, il modello Standard delle particelle, il CERN, il paradosso dei gemelli, i buchi neri e ovviamente le onde gravitazionali. Ce ne è per tutti i gusti.
Ci sono parecchie notizie interessanti questa settimana. Tanto per dirne alcune, l’esperimento LHC è stato fermato per colpa di una faina, i ricercatori di LIGO hanno guadagnato tre milioni di dollari, il satellite Hitomi è morto e SpaceX ha spiazzato tutti – tanto per cambiare – dicendo che vuole andare su Marte tra due anni.
Di cosa parliamo oggi
– LHC down per colpa di una faina
– tre milioni di dollari ai ricercatori LIGO
– Hitomi non ce l’ha fatta
– SpaceX su Marte nel 2018
– inaugurato un nuovo cosmodromo a Vostochny, in Russia
– il transito di Mercurio davanti al Sole
– un test per la gravità quantistica
LHC down
Il Large Hadron Collider del CERN (cos’è?) è stato spento per un paio di giorni dopo che una faina è salita sui terminali di un trasformatore elettrico, mandandolo in corto circuito. Il corto circuito ha fatto spegnere il sistema di criogenia dell’acceleratore di particelle – che è solitamente mantenuto a una temperatura di poco superiore a -273°C. Un innalzamento della temperatura anche di pochi decimi di grado sembra poca cosa, ma a temperature così basse richiede tempo per ristabilire le condizioni ottimali per gli esperimenti. Nonostante l’intoppo non ci sono state gravi conseguenze per LHC, che ieri è stato rimesso in funzione. Lo stesso non si può dire della faina, che si è presa una scarica elettrica da 66 mila volt.
Tre milioni di dollari ai ricercatori LIGO
Il fisico e milionario russo Yuri Milner – quello del progetto Breakthrough starshot – ha deciso di devolvere tre milioni di dollari ai ricercatori che hanno partecipato alla scoperta delle onde gravitazionali. Questa somma si aggiunge ai tre milioni di dollari che elargisce ogni autunno come premio per le migliori scoperte in fisica fondamentale. Dei tre milioni, uno verrà diviso dagli ideatori dell’esperimento LIGO – Kip Thorne, Rainer Weiss e Ronald Drever – mentre i rimanenti due milioni saranno distribuiti tra i mille scienziati che hanno firmato l’articolo pubblicato sul Physical Review Letters.
Hitomi non ce l’ha fatta
Da qualche settimana l’agenzia spaziale Giapponese JAXA non è più in grado di comunicare con il satellite a raggi X Hitomi, lanciato a Febbraio. Il guasto è probabilmente dovuto al completo distacco dei pannelli solari dal satellite, che è quindi inutilizzabile. JAXA ha deciso interrompere ogni tentativo di recupero. Ora sarà importante capire se la rottura è stata causata da un problema di progettazione, di costruzione o se il satellite è stato danneggiato inavvertitamente durante le fasi di trasporto e lancio. Della analisi preliminari parrebbe che si tratti di un errore di programmazione informatica: il computer di Hitomi avrebbe accelerato la rotazione del satellite, anziché rallentarla.
SpaceX su Marte nel 2018?
Una notizia che mi era sfuggita. Con un tweet SpaceX ha annunciato di voler lanciare una capsula Red Dragon su Marte entro il 2018. La missione avverrebbe senza equipaggio, ma la notizia, che ha colto tutti di sorpresa, rafforza le impressioni che SpaceX e la NASA possano presto collaborare per una missione su Marte.
Planning to send Dragon to Mars as soon as 2018. Red Dragons will inform overall Mars architecture, details to come pic.twitter.com/u4nbVUNCpA
— SpaceX (@SpaceX) 27 aprile 2016
La capsula Red Dragon è un veicolo spaziale progettato per effettuare missioni di atterraggio su Marte in assenza di equipaggio. Queste missioni, oltre ad avere obiettivi scientifici, serviranno a sperimentare le tecnologie necessarie per far atterrare dei grandi carichi sul pianeta senza l’utilizzo di un paracadute.
Un nuovo centro spaziale in Russia
Giovedì scorso è stato inaugurato un nuovo cosmodromo a Vostochny, in Russia. Il centro spaziale di Vostochny è stato costruito per diminuire la dipendenza della Russia dalla base di lancio di Baikonur, in Kazakhistan, che costa al governo russo circa 115 milioni di dollari all’anno di affitto.
Purtroppo uno dei nanosatelliti lanciati durante l’inaugurazione non trasmette alcun segnale. Molto probabilmente dopo l’immissione in orbita non si è acceso. Ecco il video del lancio inaugurale, con le tipiche simulazioni di Roscosmos, l’agenzia spaziale russa.
Mercurio davanti al Sole
Lunedì 9 Maggio il pianeta Mercurio transiterà davanti al Sole. Il fenomeno sarà visibile per tutto il pomeriggio. Per effettuare delle osservazioni basterà un piccolo telescopio o anche un buon binocolo con un cavalletto. È importante utilizzare dei filtri solari professionali, per evitare di bruciarsi la retina. Il prossimo passaggio di Mercurio sul Sole sarà nel novembre del 2019.
Un test per la gravità quantistica
Un gruppo di ricercatori italiani della SISSA di Trieste, del LENS di Firenze e dell’INFN di Padova hanno proposto un modello per conciliare la Relatività e la Meccanica quantistica. Come abbiamo spesso detto le due teorie non si parlano molto e da tempo i fisici cercano di unificarle in una teoria più generale. Il modello proposto di fisici italiani prevede che lo spaziotempo abbia una struttura granulare e discreta, anziché continua e liscia. Il modello, pur preservando il principio di causalità (nessun segnale può viaggiare più velocemente della luce), rinuncia a quello di località, ossia postula l’esistenza di fenomeni non locali. Il modello si aggiunge ai tanti presentati ogni anni da fisici di tutto il mondo, ma ha un aspetto importante: la possibilità, almeno sulla carta, di verificarne sperimentalmente i risultati utilizzando un piccolo chip al silicio. Questo modello è dunque un buon esempio di come viene condotta la ricerca scientifica: si fanno delle ipotesi, anche azzardate, e si cerca un modo di confrontarle con la realtà. Modelli che non possono essere testati sperimentalmente – oggi o in futuro, – non possono essere falsificati e non sono quindi buoni modelli fisici.
Feedback
Se volete contattarmi potete scrivere a spacebreak [at] francescobussola.it o rispondere a questa mail. È uguale.
Se vi fa piacere potete far conoscere la newsletter a un amico inoltrandola o suggerendogli di iscriversi.
Il paradosso dei gemelli
Nella Relatività Speciale esiste un paradosso, chiamato paradosso dei gemelli. Il paradosso è dovuto al fenomeno della dilatazione dei tempi di cui abbiamo già parlato. Per mettervi al pari e capire il paradosso potete leggere il riassuntino qua sotto, oppure dare una letta qui.
Ah, la prossima volta ci sarà in newsletter anche un breve spazio di domande e risposte. Potete inviarmi le domande a spacebreak [at] francescobussola.it, oppure su twitter o facebook.
Di cosa parliamo oggi
– il paradosso dei gemelli
– come si risolve?
– pillole della settimana
Il paradosso dei gemelli
Prima di parlare del paradosso dei gemelli, mi sembra il caso di fare tre righe di riassunto. Pronti? Via.
Riassuntino veloce veloce
La Teoria della Relatività Speciale di Einstein predice che se facciamo viaggiare degli orologi su un aereo, questi scandiranno il tempo più lentamente rispetto a quelli che sono sulla Terra. Insomma, il tempo scorre più lentamente quando ci si muove. Questo fenomeno, totalmente controintuitivo, è stato verificato sperimentalmente ed è oggi uno dei principi cardini della fisica.
I gemelli Scott e Mark
Immaginiamo che ci siano due gemelli, Scott e Mark, entrambi astronauti. Scott e Mark si trovano entrambi sulla Terra fino a quando la NASA non decide di mandare Scott in missione nello spazio. Scott dovrà viaggiare a velocità elevatissime con una navicella spaziale, effettuare alcuni test scientifici fermandosi al di fuori del Sistema Solare e infine tornare sulla Terra per comunicare i risultati. A Scott vengono date provviste per dieci anni: la missione è molto complessa, il viaggio lungo e gli esperimenti dovranno essere ripetuti più volte per verificare i risultati. Il 17 Marzo 2016, Scott parte, mentre suo fratello Mark rimane sulla Terra per addestrare dei giovani astronauti.
Il viaggio
La navicella con cui viaggia Scott si muove a velocità costante allontanandosi dalla Terra. Nello spazio non è difficile: una volta raggiunta la velocità desiderata, basta spegnere i motori e la navicella continua a viaggiare perché non c’è l’attrito dell’aria. Supponiamo che la navicella di Scott viaggi a circa 290 mila Km al secondo – una velocità prossima alla velocità della luce. Per gli effetti della Relatività Speciale l’orologio che si trova sulla navicella scandisce il tempo più lentamente di quelli che si trovano sulla Terra. Per dare dei numeri, a 290 mila Km al secondo gli orologi scorrono quasi 4 volte più lentamente, il che significa che un minuto sulla navicella corrisponde a quattro minuti sulla Terra. Insomma, quando sulla navicella passa un minuto, sulla Terra ne passano quattro,
Immaginiamo ora che Scott viaggi per quattro anni a queste velocità, si fermi per un paio d’anni al di fuori del Sistema Solare per effettuare gli esperimenti e poi decida di tornare sulla Terra per evitare di finire il cibo a disposizione. Una volta tornato sulla Terra avrà viaggiato complessivamente per otto anni – sui dieci della missione – a velocità prossime a quelle della luce.
Dalla partenza, il 17 Marzo 2016, Scott è dieci anni più vecchio ma, siccome sulla Terra il tempo è trascorso quattro volte più velocemente durante gli otto anni di viaggio di Scott, suo fratello Mark non sarà più vecchio di dieci anni, ma di trentaquattro (8[anni in viaggio]x4+2[anni di esperimenti]=34). All’arrivo di Scott, sulla Terra è il Marzo 2050, non il Marzo 2026.
Il paradosso
Fin qua è tutto molto assurdo ma, se la Relatività è vera (lo è) e se il fenomeno della dilatazione del tempo esiste (esiste), il ragionamento non fa una grinza: durante gli otto anni di viaggio a quelle velocità, il tempo sulla Terra è trascorso quattro volte più velocemente. Al loro incontro i due gemelli avranno età diverse: Scott sarà invecchiato di dieci anni, mentre Mark di trentaquattro. Dunque qual è il paradosso?
Il paradosso nasce dal principio cardine della Relatività Speciale, il principio di relatività. Il principio di relatività afferma che le leggi fisiche sono le stesse per tutti i sistemi di riferimento inerziali. Cosa significa? Significa, in questo caso, che sia Scott che Mark devono poter leggere il mondo con le stesse leggi fisiche.
Fin’ora infatti abbiamo osservato tutto il viaggio di Scott come se fossimo sulla Terra insieme a Mark: Scott è partito, ha viaggiato rispetto a noi a una velocità prossima a quella della luce per raggiungere lo spazio profondo, si è fermato e poi è tornato indietro sempre a una velocità elevatissima. Ma nulla ci impedisce di metterci dal punto di vista di Scott. Mentre viaggia, guardando fuori dall’oblò della navicella, Scott vedrebbe la Terra allontanarsi da lui a grande velocità. Se non sapesse di essere un astronauta su una navicella potrebbe credere di essere fermo in mezzo allo spazio, mentre la Terra fugge via. Potrebbe insomma avere la stessa sensazione che abbiamo quando vediamo il treno in fianco al nostro muoversi e non capiamo se è il nostro treno che parte o se siamo fermi. La velocità è infatti un concetto relativo e dipende da chi la misura: per Mark è Scott a muoversi con la sua navicella. Dal punto di vista di Scott è la Terra ad allontanarsi da lui.
Considerando Scott come se fosse fermo, allora sarebbe la Terra, insieme a Mark, a muoversi a 290 mila Km al secondo. Perciò il tempo dovrebbe dilatarsi sulla Terra, non sulla navicella. Dovrebbe insomma accadere il contrario di quanto abbiamo detto prima: quando sulla Terra passa un minuto, sulla navicella ne passano quattro. Seguendo questo ragionamento quindi sarebbe Scott a invecchiare quattro volte più velocemente di Mark, non viceversa.
Il paradosso dei gemelli è questo qua: dal punto di vista di Scott, Mark dovrebbe invecchiare. Dal punto di vista di Mark, dovrebbe invecchiare Scott. Cosa accade davvero?
Prima di dare la soluzione, ecco una bella foto di Mark e Scott Kelly, i due astronauti NASA che si sono prestati per davvero a un esperimento simile a quello che abbiamo raccontato, senza però viaggiare nello spazio profondo. Ne abbiamo parlato qui. Dopo l’esperimento, durato un anno, uno dei due è 10 millisecondi più vecchio dell’altro.
La soluzione
Per risolvere il paradosso bisogna prestare un po’ di attenzione a come si svolge l’esperimento. La situazione non è infatti completamente speculare, anche se sembrerebbe di sì. Il paradosso nasce appunto applicando il principio di relatività: i punti di vista di Mark e Scott ci sembrano equivalenti e saltando dall’uno all’altro non sappiamo più da che parte il tempo scorre più veloce o più lento.
I due punti di vista, però, non sono equivalenti. A differenza di Mark, che se ne sta comodo sulla Terra, Scott è soggetto a forti decelerazioni e accelerazioni: il razzo deve lanciare la navicella nello spazio, la navicella deve poi frenare bruscamente e fermarsi fuori dal Sistema Solare per poi riaccelerare e tornare indietro. Scott, quindi, quando i motori sono accesi, sente il suo corpo schiacciarsi contro il sedile o contro le cinture di sicurezza. Mark invece non sente alcuna accelerazione. La situazione non è dunque speculare: uno dei due astronauti percepisce, anche senza guardare fuori, anche senza sapere dove si trova, di essere soggetto a grandi accelerazioni. L’altro no.
Verso la Relatività Generale
Questo ragionamento convinse Einstein che alla Relatività mancasse un ingrediente e che l’accelerazione c’entrasse qualcosa in tutto questo. L’ingrediente mancante era la gravità, una forza che fa appunto accelerare i corpi: è impossibile distinguere un’accelerazione dovuta a una forza esterna da quella prodotta da un campo gravitazionale. Questo principio, chiamato principio di equivalenza, è il punto di partenza della Relatività Generale, la parte della Teoria di Einstein che considera anche la gravità. Per capire meglio cosa significa il principio di equivalenza, potete leggere questo esperimento immaginario, chiamato ascensore di Einstein.
Pillole della settimana
Alcune notizie di questi giorni, brevi.
ExoMars è partita
La missione ExoMars, un progetto dell’Agenzia Spaziale Europea per l’esplorazione robotica di Marte, è partita. È composta da una sonda – TGO – che rimarrà in orbita attorno a Marte e da un Lander – Schiaparelli – che atterrerà sul pianeta per studiarne l’atmosfera. Il contributo italiano alla missione, tramite l’Agenzia Spaziale Italiana e Finmeccanica, è consistente: la leadership della missione è affidata all’Italia, così come la responsabilità complessiva del sistema e lo sviluppo di Schiaparelli. Sono poi italiani i progetti di vari strumenti scientifici di Schiaparelli come DREAMS, AMELIA, MA_MISS e INRRI. Per maggiori informazioni sul ruolo dell’Italia potete guardare questo video Rai. Purtroppo il video ufficiale del lancio (questo) è piuttosto sgranato. C’è però un bel video fatto con il cellulare da Roberto Battiston, presidente dell’ASI.
Curiosità: come vengono trasportati i lanciatori di queste missioni? Così.
Glu glu
Per il capitolo «A cosa servono le missioni spaziali?», il satellite Landsat 8 sta scandagliando gli oceani per trovare relitti di navi affondate. Sapere dove sono i relitti è importante per varie ragioni. Quelli più recenti possono essere fonte di inquinamento, quelli vicini alla costa sono un potenziale pericolo per la navigazione, quelli più vecchi possono addirittura favorire la nascita di una barriera corallina. Lo sviluppo di tecnologie anche per missioni apparentemente inutili, permette poi di riutilizzarle in moltissimi ambiti che impattano direttamente sulla nostra vita.
KosmoKurs sfiderà Blue Origin
L’agenzia spaziale russa Roscosmos ha approvato il progetto dell’azienda privata KosmoKurs di Pavel Pushkin per progettare e sviluppare un sistema riutilizzabile per il turismo spaziale. I primi viaggi sono programmati attorno al 2020. Se avrete voglia di fare un viaggetto di qualche minuto nello spazio potete cominciare a mettere via un po’ di soldi. Il biglietto dovrebbe costare attorno ai 250 mila euro. KosmoKurs non è la prima azienda che punta a questo obiettivo. L’azienda americana Blue Origin di Jeff Bezos ha già effettuato i primi lanci test.
Feedback
Aspetto le vostre opinioni a spacebreak [at] francescobussola.it
Se vi fa piacere potete far conoscere la newsletter a un amico inoltrandola o suggerendogli di iscriversi.
Per approfondire
– Il paradosso dei gemelli
– L’esperimento che ha coinvolto i veri Scott e Mark Kelly (inglese)